Jump to content

NASA Space Tech’s Favorite Place to Travel in 2025: The Moon!


Recommended Posts

  • Publishers
Posted
4 Min Read

NASA Space Tech’s Favorite Place to Travel in 2025: The Moon!

Firefly Aerospace's Blue Ghost Mission 1 spacecraft in the darkness of space captures a first image from the top deck of its lunar lander.
The first image from space of Firefly's Blue Ghost mission 1 lunar lander as it begins its 45-day transit period to the Moon.
Credits: Firefly Aerospace

NASA Space Technology has big travel plans for 2025, starting with a trip to the near side of the Moon!

Among ten groundbreaking NASA science and technology demonstrations, two technologies are on a ride to survey lunar regolith – also known as “Moon dust” – to better understand surface interactions with incoming lander spacecraft and payloads conducting experiments on the surface. These dust demonstrations and the data they’re designed to collect will help support future lunar missions.  

Blue Ghost Mission 1 launched at 1:11 a.m. EST aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. The company is targeting a lunar landing on Sunday, March 2. 

The first image from space of Firefly’s Blue Ghost mission 1 lunar lander as it begins its 45-day transit period to the Moon. The top deck of the lander is visible here with the X-band antenna and NASA’s Lunar Environment heliospheric X-ray Imager (LEXI) payload.
The first image from space of Firefly’s Blue Ghost mission 1 lunar lander as it begins its 45-day transit period to the Moon.
Firefly Aerospace

NASA Space Technology on Blue Ghost Mission 1

NASA’s Electrodynamic Dust Shield (EDS) will lift, transport, and remove particles using electric fields to repel and prevent hazardous lunar dust accumulation on surfaces. The agency’s Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) technology will use stereo imaging to capture the impact of rocket plumes on lunar regolith as the lander descends to the Moon’s surface, returning high-resolution images that will help in creating models to predict regolith erosion – an important task as bigger, heavier payloads are delivered to the Moon in close proximity to each other. 

The EDS and SCALPSS technologies will be delivered to the Moon on Firefly’s first Blue Ghost mission, named Ghost Riders in the Sky, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. Its landing target is a 300-mile-wide basin located on the Moon’s near side, called Mare Crisium – a large, dark, basaltic plain that filled an ancient asteroid impact. First-of-their-kind experiments will deploy after landing to gather important data in a broad spectrum of areas including geophysical characteristics, global navigation, radiation tolerant computing, and the behavior of lunar regolith.

Replicating the Moon’s harsh environment on Earth is a significant challenge because of extreme temperatures, low gravity, radiation, and dusty surface. The CLPS initiative provides unprecedented access to the lunar surface, allowing us to demonstrate technologies in the exact conditions they were designed for. Missions like Blue Ghost Mission 1 are a true game changer for NASA technology advancement and demonstration.”

Michael Johansen

Michael Johansen

Flight Demonstrations Lead for NASA’s Game Changing Development program

Dust particles scatter during an experiment for the Electrodynamic Dust Shield for Dust Mitigation.
Dust particles scatter during an experiment for the Electrodynamic Dust Shield in a laboratory at NASA’s Kennedy Space Center in Florida.
NASA
lunar surface camera technology integrated on a lunar lander
NASA’s Stereo Camera for Lunar Plume-Surface Studies technology integrated on Firefly’s Blue Ghost lander.
Firefly Aerospace
A complex wrinkle ridge in Mare Crisium at low Sun, seen in an image captured by the Lunar Reconaissance Orbiter Camera (illumination is from the right). Image width is 700 m, north is up. Boulders occupy the tops of mounds on the west ridge, and the central depression is more heavily cratered than the ridge.
A complex wrinkle ridge in Mare Crisium at low Sun, seen in an image captured by the Lunar Reconnaissance Orbiter Camera.
NASA/GSFC/Arizona State University

Understanding regolith

The Moon’s dusty environment was one of the greatest challenges astronauts faced during Apollo Moon missions, posing hazards to lunar surface systems, space suits, habitats, and instrumentation. What was learned from those early missions – and from thousands of experiments conducted on Earth and in space since – is that successful surface missions require the ability to eliminate dust from all kinds of systems. Lunar landings, for example, cause lunar dust to disperse in all directions and collect on everything that lands there with it. This is one of the reasons such technologies are important to understand. The SCALPSS technology will study the dispersion of lunar dust, while EDS will demonstrate a solution to mitigate it. 

Getting this new data on lunar regolith with be pivotal for our understanding of the lunar surface. We’ve long known that lunar dust is a huge challenge. The Lunar Surface Innovation Initiative has enabled us to initiate lunar dust mitigation efforts across the agency, working with industry and international partners. The lunar science, exploration, and technology communities are eager to have new quantitative data, and to prove laboratory experiments and develop technology solutions.”

Kristen John

Kristen John

Technical Integration Lead for NASA’s Lunar Surface Innovation Initiative (LSII)

[VIDEO] Dust on the lunar surface is a significant hazard for systems and astronauts living and working on the Moon. NASA space technologies are developing solutions to retire hurdles in this capability area.
NASA Space Technology

Dust mitigation technology has come a long way, but we still have a lot to learn to develop surface systems and infrastructure for more complex missions. LSII is actively engaged in this effort, working with the lunar community across sectors to expand knowledge and design new approaches for future technologies. Working alongside the Lunar Surface Innovation Consortium, LSII has a unique opportunity to take a holistic look at dust’s role in the development of surface infrastructure with other key capability areas including in-situ resource utilization, surface power, and surviving the lunar night.  

Learning from the the Moon benefits Mars science and exploration

Capabilities for minimizing dust interaction are as important for future missions on Mars as it is for missions on the Moon. Like the Moon, Mars is also covered with regolith, also called Martian dust or Martian soil, but the properties are different than lunar regolith, both in shape and mineralogy. The challenges Mars rovers have encountered with Martian regolith have provided great insight into the challenges we will face during lunar surface missions. Learning is interwoven and beneficial to future missions whether hundreds of thousands of miles from Earth, on the Moon, or millions, on Mars.  

Black and white image of an astronaut sampling lunar dust on the surface of the Moon during the Apollo 17 mission.
Scientist-astronaut Harrison Schmitt, Apollo 17 lunar module pilot, uses an adjustable sampling scoop to retrieve lunar samples during the second Apollo 17 extravehicular activity (EVA).
NASA
Imprints in Mars dust from a rover's robotic arm
NASA’s Perseverance Mars rover snagged two samples of regolith – broken rock and dust – on Dec. 2 and 6, 2022. This set of images, taken by the rover’s left navigation camera, shows Perseverance’s robotic arm over the two holes left after the samples were collected.
NASA/JPL-Caltech

Learn more from a planetary scientist about how science factors into lunar dust mitigation technologies:

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Backyard Astronomy: LIVE Streaming the Moon 3rd May
    • By NASA
      Credit: NASA The Trump-Vance Administration released toplines of the President’s budget for Fiscal Year 2026 on Friday. The budget accelerates human space exploration of the Moon and Mars with a fiscally responsible portfolio of missions.
      “This proposal includes investments to simultaneously pursue exploration of the Moon and Mars while still prioritizing critical science and technology research,” said acting NASA Administrator Janet Petro. “I appreciate the President’s continued support for NASA’s mission and look forward to working closely with the administration and Congress to ensure we continue making progress toward achieving the impossible.”
      Increased commitment to human space exploration in pursuit of exploration of both the Moon and Mars. By allocating more than $7 billion for lunar exploration and introducing $1 billion in new investments for Mars-focused programs, the budget ensures America’s human space exploration efforts remain unparalleled, innovative, and efficient. Refocus science and space technology resources to efficiently execute high priority research. Consistent with the administration’s priority of returning to the Moon before China and putting an American on Mars, the budget will advance priority science and research missions and projects, ending financially unsustainable programs including Mars Sample Return. It emphasizes investments in transformative space technologies while responsibly shifting projects better suited for private sector leadership. Transition the Artemis campaign to a more sustainable, cost-effective approach to lunar exploration. The SLS (Space Launch System) rocket and Orion capsule will be retired after Artemis III, paving the way for more cost-effective, next-generation commercial systems that will support subsequent NASA lunar missions. The budget also ends the Gateway Program, with the opportunity to repurpose already produced components for use in other missions. International partners will be invited to join these renewed efforts, expanding opportunities for meaningful collaboration on the Moon and Mars. Continue the process of transitioning the International Space Station to commercial replacements in 2030, focusing onboard research on efforts critical to the exploration of the Moon and Mars. The budget reflects the upcoming transition to a more cost-effective, open commercial approach to human activities in low Earth orbit by reducing the space station’s crew size and onboard research, preparing for the safe decommissioning of the station and its replacement by commercial space stations. Work to minimize duplication of efforts and most efficiently steward the allocation of American taxpayer dollars. This budget ensures NASA’s topline enables a financially sustainable trajectory to complete groundbreaking research and execute the agency’s bold mission. Focus NASA’s resources on its core mission of space exploration. This budget ends climate-focused “green aviation” spending while protecting the development of technologies with air traffic control and other U.S. government and commercial applications, producing savings. This budget also will ensure continued elimination any funding toward misaligned DEIA initiatives, instead designating that money to missions capable of advancing NASA’s core mission. NASA will continue to inspire the next generation of explorers through exciting, ambitious space missions that demonstrate American leadership in space. NASA will coordinate closely with its partners to execute these priorities and investments as efficiently and effectively as possible.
      Building on the President’s promise to increase efficiency this budget pioneers a focused, innovative, and fiscally-responsible path to America’s next great era of human space exploration.
      Learn more about the President’s budget request for NASA:
      https://www.nasa.gov/budget
      -end-
      Bethany Stevens
      Headquarters, Washington
      771-216-2606
      bethany.c.stevens@nasa.gov
      Share
      Details
      Last Updated May 02, 2025 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
      Budget & Annual Reports View the full article
    • By NASA
      Robert Williams is a senior mechanical design engineer and the structures subject matter expert in the Engineering and Test Directorate at NASA’s Stennis Space Center.NASA/Danny Nowlin Living up to, and maintaining, the standard of excellence associated with NASA is what drives Robert Williams at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
      A native of Gulfport, Mississippi, Williams said he has had the opportunity to work with and be mentored by “some truly exceptional” engineers, some with careers reaching back to the Apollo era.
      “I cannot overstate the vast amount of practical knowledge and experience we have at NASA Stennis,” Williams said. “We know how to get things done, and if we do not know, I can guarantee we will figure it out.”
      Williams is a senior mechanical design engineer and the structures subject matter expert for the NASA Stennis Engineering and Test Directorate.
      He provides technical oversight related to engineering mechanics and machine design by reviewing analysis and design packages from NASA Stennis contractors and NASA engineers for ongoing projects.
      Williams also supports projects by performing analysis and creating detailed models, drawings, and system level designs, mostly at the versatile four-stand E Test Complex, where NASA Stennis has 12 active test cells capable of various component, engine, and stage test activities to support the agency and commercial companies.
      In support of NASA’s Artemis campaign of returning astronauts to the Moon, Williams also has reviewed structural and pipe stress analysis for the exploration upper stage project that will test a new SLS (Space Launch System) rocket stage to fly on future Artemis missions.
      He performed similar review work for Green Run testing of the SLS core stage at NASA Stennis ahead of the successful launch of the Artemis I uncrewed mission around the Moon. 
      Overall, Williams has been a part of projects on every test stand throughout more than eight years with NASA and five years as a contractor. He has been tasked with solving challenging problems, both individually and as a part of teams.
      There were times when he was not sure if he or the team would be able to solve the problem or address it effectively, but each time, the NASA Stennis team found a way.
      “Over the span of my career, I have yet to be in a situation where the challenge was not met,” he said.
      The opportunity to work with “pretty much all the major space companies in some capacity” is most interesting to Williams. “The best thing is that being a small organization within a relatively small center, there are always opportunities to develop new skills and capabilities to help fill a need or gap,” he said.
      No matter the task, Williams looks forward to supporting space innovation while living up to, and maintaining, the standard of excellence associated with NASA for the benefit of all. 
      Explore More
      3 min read Lagniappe for April 2025
      Article 4 weeks ago 4 min read Lagniappe for March 2025
      Article 2 months ago 6 min read NASA Stennis Flashback: Learning About Rocket Engine Exhaust for Safe Space Travel
      Article 2 months ago View the full article
    • By European Space Agency
      Week in images: 28 April - 02 May 2025
      Discover our week through the lens
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s SPHEREx mission is observing the entire sky in 102 infrared colors, or wavelengths of light not visible to the human eye. This image shows a section of sky in one wavelength (3.29 microns), revealing a cloud of dust made of a molecule similar to soot or smoke.NASA/JPL-Caltech This image from NASA’s SPHEREx shows the same region of space in a different infrared wavelength (0.98 microns), but the dust cloud is no longer visible. The molecules that compose the dust — polycyclic aromatic hydrocarbons — do not radiate light in this color.NASA/JPL-Caltech After weeks of preparation, the space observatory has begun its science mission, taking about 3,600 unique images per day to create a map of the cosmos like no other.
      Launched on March 11, NASA’s SPHEREx space observatory has spent the last six weeks undergoing checkouts, calibrations, and other activities to ensure it is working as it should. Now it’s mapping the entire sky — not just a large part of it — to chart the positions of hundreds of millions of galaxies in 3D to answer some big questions about the universe. On May 1, the spacecraft began regular science operations, which consist of taking about 3,600 images per day for the next two years to provide new insights about the origins of the universe, galaxies, and the ingredients for life in the Milky Way.
      This video shows SPHEREx’s field of view as it scans across one section of sky inside the Large Magellanic Cloud, with rainbow colors representing the infrared wavelengths the telescope’s detectors see. The view from one detector array moves from purple to green, followed by the second array’s view, which changes from yellow to red. The images are looped four times. NASA/JPL-Caltech “Thanks to the hard work of teams across NASA, industry, and academia that built this mission, SPHEREx is operating just as we’d expected and will produce maps of the full sky unlike any we’ve had before,” said Shawn Domagal-Goldman, acting director of the Astrophysics Division at NASA Headquarters in Washington. “This new observatory is adding to the suite of space-based astrophysics survey missions leading up to the launch of NASA’s Nancy Grace Roman Space Telescope. Together with these other missions, SPHEREx will play a key role in answering the big questions about the universe we tackle at NASA every day.”
      From its perch in Earth orbit, SPHEREx peers into the darkness, pointing away from the planet and the Sun. The observatory will complete more than 11,000 orbits over its 25 months of planned survey operations, circling Earth about 14½ times a day. It orbits Earth from north to south, passing over the poles, and each day it takes images along one circular strip of the sky. As the days pass and the planet moves around the Sun, SPHEREx’s field of view shifts as well so that after six months, the observatory will have looked out into space in every direction.
      When SPHEREx takes a picture of the sky, the light is sent to six detectors that each produces a unique image capturing different wavelengths of light. These groups of six images are called an exposure, and SPHEREx takes about 600 exposures per day. When it’s done with one exposure, the whole observatory shifts position — the mirrors and detectors don’t move as they do on some other telescopes. Rather than using thrusters, SPHEREx relies on a system of reaction wheels, which spin inside the spacecraft to control its orientation.
      Hundreds of thousands of SPHEREx’s images will be digitally woven together to create four all-sky maps in two years. By mapping the entire sky, the mission will provide new insights about what happened in the first fraction of a second after the big bang. In that brief instant, an event called cosmic inflation caused the universe to expand a trillion-trillionfold.
      “We’re going to study what happened on the smallest size scales in the universe’s earliest moments by looking at the modern universe on the largest scales,” said Jim Fanson, the mission’s project manager at NASA’s Jet Propulsion Laboratory in Southern California. “I think there’s a poetic arc to that.”
      Cosmic inflation subtly influenced the distribution of matter in the universe, and clues about how such an event could happen are written into the positions of galaxies across the universe. When cosmic inflation began, the universe was smaller than the size of an atom, but the properties of that early universe were stretched out and influence what we see today. No other known event or process involves the amount of energy that would have been required to drive cosmic inflation, so studying it presents a unique opportunity to understand more deeply how our universe works.
      “Some of us have been working toward this goal for 12 years,” said Jamie Bock, the mission’s principal investigator at Caltech and JPL. “The performance of the instrument is as good as we hoped. That means we’re going to be able to do all the amazing science we planned on and perhaps even get some unexpected discoveries.”
      Color Field
      The SPHEREx observatory won’t be the first to map the entire sky, but it will be the first to do so in so many colors. It observes 102 wavelengths, or colors, of infrared light, which are undetectable to the human eye. Through a technique called spectroscopy, the telescope separates the light into wavelengths — much like a prism creates a rainbow from sunlight — revealing all kinds of information about cosmic sources.
      For example, spectroscopy can be harnessed to determine the distance to a faraway galaxy, information that can be used to turn a 2D map of those galaxies into a 3D one. The technique will also enable the mission to measure the collective glow from all the galaxies that ever existed and see how that glow has changed over cosmic time.
      And spectroscopy can reveal the composition of objects. Using this capability, the mission is searching for water and other key ingredients for life in these systems in our galaxy. It’s thought that the water in Earth’s oceans originated as frozen water molecules attached to dust in the interstellar cloud where the Sun formed.
      The SPHEREx mission will make over 9 million observations of interstellar clouds in the Milky Way, mapping these materials across the galaxy and helping scientists understand how different conditions can affect the chemistry that produced many of the compounds found on Earth today.
      More About SPHEREx
      The SPHEREx mission is managed by JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems in Boulder, Colorado, built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech in Pasadena managed and integrated the instrument. The mission’s principal investigator is based at Caltech with a joint JPL appointment. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      For more about SPHEREx, visit:
      https://science.nasa.gov/mission/spherex/
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2025-063
      Share
      Details
      Last Updated May 01, 2025 Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Exoplanets Galaxies Jet Propulsion Laboratory The Search for Life The Universe Explore More
      4 min read NASA’s Chandra Diagnoses Cause of Fracture in Galactic “Bone”
      Article 3 hours ago 3 min read The Universe’s Brightest Lights Have Some Dark Origins
      Did you know some of the brightest sources of light in the sky come from…
      Article 1 day ago 8 min read How to Contribute to Citizen Science with NASA
      A cell phone, a computer—and your curiosity—is all you need to become a NASA citizen…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...