Jump to content

40 Years Ago: STS-51C, the First Dedicated Department of Defense Shuttle Mission


Recommended Posts

  • Publishers
Posted

On Jan. 24, 1985, space shuttle Discovery took off from NASA’s Kennedy Space Center (KSC) in Florida on STS-51C, the first space shuttle mission entirely dedicated to the Department of Defense (DOD). As such, many of the details of the flight remain classified. Discovery’s crew of Commander Thomas “T.K.” Mattingly, Pilot Loren Shriver, Mission Specialists Ellison Onizuka and James Buchli, and Payload Specialist Gary Payton deployed a classified satellite that used an Inertial Upper Stage (IUS) to reach its final geostationary orbit. The three-day mission ended with a landing at KSC. Postflight inspection of the Solid Rocket Boosters (SRBs) revealed the most significant erosion of O-ring seals seen in the shuttle program up to that time, attributed to unusually cold weather before and during launch. 

In October 1982, NASA assigned astronauts Mattingly, Shriver, Onizuka, and Buchli as the STS-10 crew for a dedicated DOD flight aboard Challenger then scheduled for September 1983. Payton joined the crew as a payload specialist in the summer of 1983 with Keith Wright assigned as his backup. The failure of the IUS on STS-6 in April 1983 delayed the STS-10 mission, that also used the IUS, until engineers could identify and fix the cause of the problem. By September 1983, NASA had remanifested the crew and the payload on STS-41F with a July 1984 launch, that changed to STS-41E by November 1983. Additional delays in fixing the IUS delayed the mission yet again, by June 1984 redesignated as STS-51C and slated for December 1984 aboard Challenger. 

STS-51C marked the third spaceflight for Mattingly, selected in 1966 as part of NASA’s fifth group of astronauts. He served on the prime crew for Apollo 13 until exposure to German measles forced his last-minute replacement by his backup. He then flew on Apollo 16 and STS-4. For Shriver, Onizuka, and Buchli, all three selected as astronauts in the class of 1978, STS-51C marked their first trip into space. The U.S. Air Force selected Payton and Wright in August 1979 in its first class of Manned Spaceflight Engineers, and STS-51C marked Payton’s first and only space mission. 

In November 1984, NASA decided to delay STS-51C from December 1984 to January 1985 and swap orbiters from Challenger to Discovery. Postflight inspections following Challenger’s STS-41G mission in October 1984 revealed degradation of the bonding materials holding thermal protection system tiles onto the orbiter, requiring the replacement of 4,000 tiles. The time required to complete the work precluded a December launch. Tests conducted on Discovery prior to its November STS-51A mission revealed the bonding material to be sound.  

On Jan. 5, 1985, Discovery rolled out from KSC’s Vehicle Assembly Building, where workers mated it with its External Tank (ET) and SRBs, to Launch Pad 39A. There, engineers conducted the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the actual countdown, on Jan. 6-7, with the crew participating in the final few hours much as they would on launch day. The astronauts returned to KSC on Jan. 20 to prepare for the planned launch on Jan. 23. The day before, NASA managers decided to delay the launch by one day due to unseasonably cold weather, with concern about sub-freezing temperatures causing ice to form on the ET and possibly coming loose during ascent and damaging the vehicle. The DOD had requested that NASA keep the actual launch time secret until T minus nine minutes, with most of the countdown taking place hidden from public view.  

Image of a space shuttle lifting off from its launch pad on a pillar of fire against a blue sky.
Liftoff of space shuttle Discovery on STS-51C.

Liftoff of Discovery on its third mission, STS-51C, came at 2:50 p.m. EST on Jan. 24, beginning the 15th space shuttle flight. Eight and a half minutes later, Discovery and its five-man crew had reached orbit. And, at the DOD customer’s request, all public coverage of the mission ended. Although NASA could not reveal the spacecraft’s orbital parameters, trade publications calculated that Discovery first entered an elliptical orbit, circularized over the next few revolutions, prior to Onizuka deploying the IUS and payload combination on the seventh orbit. Neither NASA nor the DOD have released any imagery of the deployment or even of the payload bay, with only a limited number of in-cabin and Earth observation photographs made public. 

To maintain the mission’s secrecy, NASA could reveal the touchdown time only 16 hours prior to the event. On Jan. 27, Mattingly and Shriver brought Discovery to a smooth landing at KSC’s Shuttle Landing Facility after a flight of three days one hour 33 minutes, the shortest space shuttle mission except for the first two orbital test flights. The astronauts orbited the Earth 49 times. About an hour after touchdown, the astronaut crew exited Discovery and boarded the Astrovan for the ride back to crew quarters. Neither NASA management nor the astronauts held a post mission press conference. The U.S. Air Force announced only that the “IUS aboard STS-51C was deployed from the shuttle Discovery and successfully met its mission objectives.” Later in the day, ground crews towed Discovery to the Orbiter Processing Facility to begin preparing it for its next planned mission, STS-51D in March. 

Postscript 

Following the recovery of SRBs after each shuttle mission, engineers conducted detailed inspections before clearing them for reuse. After STS-51C, inspections of the critical O-ring seals that prevented hot gases from escaping from the SRB field joints revealed significant erosion and “blow-by” between the primary and secondary O-rings. Both left and right hand SRBs showed this erosion, the most significant of the program up to that time. Importantly, these O-rings experienced weather colder than any previous shuttle mission, with overnight ambient temperatures in the teens and twenties. Even at launch time, the O-rings had reached only 60 degrees. Engineers believed that these cold temperatures made the O-rings brittle and more susceptible to erosion. One year later, space shuttle Challenger launched after similarly cold overnight temperatures, with O-rings at 57 degrees at launch time. The Rogers Commission report laid the blame of the STS-51L accident on the failure of O-rings that allowed super-hot gases to escape from the SRB and impinge on the hydrogen tank in the ET, resulting in the explosion that destroyed the orbiter and claimed the lives of seven astronauts. The commission also faulted NASA’s safety culture for not adequately addressing the issue of O-ring erosion, a phenomenon first observed on STS-2 and to varying degrees on several subsequent missions.  

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The SpaceX Dragon spacecraft carrying the Axiom Mission 3 crew is pictured approaching the International Space Station on Jan. 20, 2024.Credit: NASA NASA, Axiom Space, and SpaceX are targeting 2:31 a.m. EDT, Wednesday, June 25, for launch of the fourth private astronaut mission to the International Space Station, Axiom Mission 4.
      The mission will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The crew will travel to the orbiting laboratory on a new SpaceX Dragon spacecraft after launching on the company’s Falcon 9 rocket. The targeted docking time is approximately 7 a.m. Thursday, June 26.
      This launch opportunity comes after NASA and Roscosmos officials discussed the status of the recent repair work in the transfer tunnel at the aft (back) most segment of the orbital laboratory’s Zvezda service module. Based on the evaluations, NASA and Roscosmos agreed to further lower the pressure in the transfer tunnel to 100 millimeters of mercury, and teams will continue to evaluate going forward. Safety remains a top priority for NASA and Roscosmos.
      “NASA and Roscosmos have a long history of cooperation and collaboration on the International Space Station. This professional working relationship has allowed the agencies to arrive at a shared technical approach and now Axiom Mission 4 launch and docking will proceed,” said acting NASA Administrator Janet Petro. “We look forward to the launch with Axiom Space and SpaceX for this commercial international mission.”
      For this mission, NASA is responsible for integrated operations, which begins during the spacecraft’s approach to the space station, continues during the crew’s stay aboard the orbiting laboratory conducting science, education, and commercial activities, and concludes once the spacecraft departs the station.
      Live coverage of launch and arrival activities will stream on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO (Indian Space Research Organisation) astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary.
      Once docked, the private astronauts plan to spend about two weeks aboard the orbiting laboratory, conducting a mission comprised of science, outreach, and commercial activities.
      As part of a collaboration between NASA and ISRO, Axiom Mission 4 delivers on a commitment highlighted by President Donald Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies are participating in five joint science investigations and two in-orbit STEM (science, technology, engineering, and mathematics) demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      The private mission also carries the first astronauts from Poland and Hungary to stay aboard the International Space Station.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, June 25
      12:30 a.m. – Axiom Space and SpaceX launch coverage begins.
      1:40 a.m. – NASA joins the launch coverage on NASA+.
      2:31 a.m. – Launch
      NASA will end coverage following orbital insertion, which is approximately 15 minutes after launch. As it is a commercial launch, NASA will not provide a clean launch feed on its channels.
      Thursday, June 26
      5 a.m. – Arrival coverage begins on NASA+, Axiom Space, and SpaceX channels.
      7 a.m. – Targeted docking to the space-facing port of the station’s Harmony module.
      Arrival coverage will continue through hatch opening and welcome remarks.
      All times are estimates and could be adjusted based on real-time operations after launch. Follow the space station blog for the most up-to-date operations information.
      The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Share
      Details
      Last Updated Jun 24, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Crew Commercial Space Commercial Space Programs International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By Space Force
      Col. Nick Hague, the first Guardian to launch into space, visited Vandenberg Space Force Base.

      View the full article
    • By NASA
      Explore This Section Science Artemis Mission Accomplished! Artemis… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   5 min read
      Mission Accomplished! Artemis ROADS III National Challenge Competitors Celebrate their Achievements
      The NASA Science Activation program’s Northwest Earth and Space Sciences Pathways (NESSP) team has successfully concluded the 2024–2025 Artemis ROADS III National Challenge, an educational competition that brought real NASA mission objectives to student teams (and reached more than 1,500 learners) across the country. From December 2024 through May 2025, over 300 teams of upper elementary, middle, and high school students from 22 states participated, applying STEM (Science, Technology, Engineering, and Mathematics) skills in exciting and creative ways.
      Participants tackled eight Mission Objectives inspired by NASA’s Artemis missions, which aim to return humans to the Moon. Students explored challenges such as:
      Designing a water purification system for the Moon inspired by local water cycles Developing a Moon-based agricultural plan based on experimental results Programming a rover to autonomously navigate lunar tunnels Engineering and refining a human-rated water bottle rocket capable of safely returning a “chip-stronaut” to Earth Envisioning their future careers through creative projects like graphic novels or video interviews Exploring NASA’s Artemis program through a new Artemis-themed Lotería game In-person hub events were hosted by Northern Arizona University, Central Washington University, and Montana State University, where teams from Washington, Montana, and Idaho gathered to present their work, collaborate with peers, and experience life on a college campus. Students also had the chance to connect virtually with NASA scientists and engineers through NESSP’s NASA Expert Talks series.
      “Artemis ROADS III is NESSP’s eighth ROADS challenge, and I have to say, I think it’s the best one yet. It’s always inspiring to see so many students across the country engage in a truly meaningful STEM experience. I heard from several students and educators that participating in the challenge completely changed their perspective on science and engineering. I believe that’s because this program is designed to let students experience the joy of discovery and invention—driven by both teamwork and personal creativity—that real scientists and engineers love about their work. We also show students the broad range of STEM expertise NASA relies on to plan and carry out a mission like Artemis. Most importantly, it gives them a chance to feel like they are part of the NASA mission, which can be truly transformative.”
       – Dr. Darci Snowden, Director, NESSP
      NESSP proudly recognizes the following teams for completing all eight Mission Objectives and the Final Challenge:
      Space Pringles, 3rd-5th Grade, San Antonio, TX  Space Axolotls, 3rd-5th Grade, Roberts, MT  TEAM Wild, 6th-8th Grade, Eagle Mountain, UT  Pessimistic Penguins, 6th-8th Grade, Eagle Mountain, UT  Dwarf Planets, 6th-8th Grade, Eagle Mountain, UT  Astronomical Rovers, 6th-8th Grade, Eagle Mountain, UT  Cosmic Honeybuns, 6th-8th Grade, Eagle Mountain, UT  Houston we have a Problem, 6th-8th Grade, Eagle Mountain, UT  FBI Wanted List, 6th-8th Grade, Eagle Mountain, UT  Lunar Legion, 6th-8th Grade, San Antonio, TX  Artemis Tax-Free Space Stallions, 6th-8th Grade, Egg Harbor, NJ  Aquila, 6th-8th Grade, Gooding, ID  Space Warriors, 6th-8th Grade, Wapato, WA  Team Cygnus, 6th-8th Grade, Red Lodge, MT  Maple RocketMen, 6th-8th Grade, Northbrook, IL  RGB Hawks, 6th-8th Grade, Sagle, ID  The Blue Moon Bigfoots, 6th-8th Grade, Medford, OR  W.E.P.Y.C.K., 6th-8th Grade, Roberts, MT  Lunar Dawgz, 6th-8th Grade, Safford, AZ  ROSEBUD ROCKETEERS, 6th-8th Grade, Rosebud, MT  The Cosmic Titans, 6th-8th Grade, Thomson Falls, MT  The Chunky Space Monkeys, 6th-8th Grade, Naches, WA  ROSEBUD RED ANGUS, 9th-12th Grade, Rosebud, MT  Bulky Bisons, 9th-12th Grade, Council Grove, KS  The Falling Stars, 9th-12th Grade, Thomson Falls, MT  The Roadkillers, 9th-12th Grade, Thomson Falls, MT  The Goshawks, 9th-12th Grade, Thomson Falls, MT  Sequim Cosmic Catalysts, 9th-12th Grade, Sequim, WA  Spuddie Buddies, 9th-12th Grade, Moses Lake, WA  Astrocoquí 2, 9th-12th Grade, Mayaguez, PR  Big Sky Celestials, 9th-12th Grade, Billings, MT  TRYOUTS, 9th-12th Grade, Columbus, MT  Cosmonaughts, 9th-12th Grade, Columbus, MT  TCCS 114, 9th-12th Grade, Tillamook, OR  Marvin’s Mighty Martians, 9th-12th Grade, Simms, TX You can see highlights of these teams’ work in the Virtual Recognition Ceremony video on the NESSP YouTube channel. The presentation also features the teams selected to travel to Kennedy Space Center in August of 2025, the ultimate prize for these future space explorers!
      In addition to student engagement, the ROADS program provided professional development workshops and NGSS-aligned classroom resources to support K–12 educators. Teachers are invited to explore these materials and register for the next round of workshops, beginning in August 2025: https://nwessp.org/professional-development-registration.
      For more information about NESSP, its programs, partners, and the ROADS National Challenge, visit www.nwessp.org or contact info@nwessp.org.
       ———–
      NASA’s Northwest Earth and Space Science Pathways’ (NESSP) project is supported by NASA cooperative agreement award number 80NSSC22M0006 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      A water bottle rocket launches into the air carrying its precious chip-stronaut cargo. Share








      Details
      Last Updated Jun 23, 2025 Editor NASA Science Editorial Team Related Terms
      Artemis Biological & Physical Sciences Planetary Science Science Activation Explore More
      3 min read NASA Scientists Find Ties Between Earth’s Oxygen and Magnetic Field


      Article


      5 days ago
      3 min read NASA Interns Conduct Aerospace Research in Microgravity


      Article


      4 weeks ago
      5 min read Percolating Clues: NASA Models New Way to Build Planetary Cores


      Article


      1 month ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By European Space Agency
      Today, at the Living Planet Symposium, ESA revealed the first stunning images from its groundbreaking Biomass satellite mission – marking a major leap forward in our ability to understand how Earth’s forests are changing and exactly how they contribute to the global carbon cycle. But these inaugural glimpses go beyond forests. Remarkably, the satellite is already showing potential to unlock new insights into some of Earth’s most extreme environments.
      View the full article
    • By European Space Agency
      Image: ESA astronaut Sophie Adenot’s first mission to the International Space Station now has a name: εpsilon. The mission name and patch were announced today at the Paris Air Show by ESA Director General Josef Aschbacher, French President Emmanuel Macron, and Sophie Adenot, who joined remotely from the United States, where she is training for her spaceflight.
      Sophie Adenot is one of the five astronauts selected from ESA’s most recent astronaut class of 2022. Following the successful completion of their basic training in spring 2024, Josef Aschbacher announced during the Space Council in Brussels that Sophie and fellow graduate Raphaël Liégois had been assigned their first missions to the International Space Station, currently planned for 2026.
      The εpsilon name and patch reflect the power of small, yet impactful contributions and how multiple parts unite to create a whole.
      In mathematics, “ε” represents something small. In the extensive collaborative effort of space exploration, involving thousands of participants, all roles, including the astronaut's role, stay small yet meaningful.
      The hummingbird, central to the patch, embodies this idea; though one of Earth’s smallest birds, it plays a crucial role in the jungle’s ecosystem, pollinating numerous plants.
      Encircling the patch is a ring of small dots, symbolising the many small contributions that together make great achievements possible. All these little actions that can be coordinated to form a circle and close the loop. At the top, three of these dots are coloured – blue, white, and red – representing Sophie’s home country, France, and ESA’s exploration destinations: Earth, the Moon, and Mars.
      The name εpsilon, being the fifth Greek letter and the fifth brightest star of the Leo constellation, also follows the French tradition to name human spaceflight missions after celestial bodies. It also pays tribute to the five career astronauts of ESA’s 2022 class. 
      Three lines emerge from the “i” of the εpsilon, shaping the tail of a shooting star, a poetic reminder that dreams keep us alive.
      At the base of the patch lies a rounded blue shape, representing Earth’s surface and its natural beauty: mountains, forests and landscapes that Sophie enjoys exploring. It serves as a reminder of our motivation for spaceflight: to explore, learn, and return with this knowledge to benefit life on Earth.
      From an emotional perspective, the same message is conveyed. In life's intricate tapestry, small threads contribute to create the most beautiful patterns. A kind word, a gentle smile, a moment of patience - these seemingly insignificant actions can transform lives and shape destinies. This patch invites each of us to embrace the potential of our smallest actions as they ripple outward, touching hearts and inspiring souls.
      During her εpsilon mission, Sophie will perform numerous scientific experiments, many of them European, conduct medical research, support Earth observation and contribute to operations and maintenance aboard the International Space Station.
      View the full article
  • Check out these Videos

×
×
  • Create New...