Jump to content

Recommended Posts

  • Publishers
Posted
6 Min Read

NASA’s Hubble Traces Hidden History of Andromeda Galaxy

The Andromeda galaxy, a spiral galaxy, spreads across the width. It is tilted nearly edge-on to our line of sight so that it appears as an extreme oval on its side. The borders of the galaxy are jagged because the image is a mosaic of smaller, square images. The outer edges are blue, while the inner two-thirds are yellowish with a bright, central core. Dark, dusty filamentary clouds wrap around the outer half of the galaxy’s disk. At 10 o'clock, a smaller dwarf elliptical galaxy forms a fuzzy, yellow blob. Hubble's sharp vision distinguishes about 200 million stars within the image. The background of space is black. There are what appears to be steps toward the bottom, mainly toward the middle, which indicates where no data were taken.
This photomosaic of the Andromeda galaxy is the largest ever assembled from Hubble observations.
Credits:
NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI)

In the years following the launch of NASA’s Hubble Space Telescope, astronomers have tallied over 1 trillion galaxies in the universe. But only one galaxy stands out as the most important nearby stellar island to our Milky Way — the magnificent Andromeda galaxy (Messier 31). It can be seen with the naked eye on a very clear autumn night as a faint cigar-shaped object roughly the apparent angular diameter of our Moon.

A century ago, Edwin Hubble first established that this so-called “spiral nebula” was actually very far outside our own Milky Way galaxy — at a distance of approximately 2.5 million light-years or roughly 25 Milky Way diameters. Prior to that, astronomers had long thought that the Milky way encompassed the entire universe. Overnight, Hubble’s discovery turned cosmology upside down by unveiling an infinitely grander universe.

Now, a century later, the space telescope named for Hubble has accomplished the most comprehensive survey of this enticing empire of stars. The Hubble telescope is yielding new clues to the evolutionary history of Andromeda, and it looks markedly different from the Milky Way’s history.

The Andromeda galaxy, a spiral galaxy, spreads across the width. It is tilted nearly edge-on to our line of sight so that it appears as an extreme oval on its side. The borders of the galaxy are jagged because the image is a mosaic of smaller, square images. The outer edges are blue, while the inner two-thirds are yellowish with a bright, central core. Dark, dusty filamentary clouds wrap around the outer half of the galaxy’s disk. At 10 o'clock, a smaller dwarf elliptical galaxy forms a fuzzy, yellow blob. Hubble's sharp vision distinguishes about 200 million stars within the image. The background of space is black. There are what appears to be steps toward the bottom, mainly toward the middle, which indicates where no data were taken.
This is largest photomosaic ever assembled from Hubble Space Telescope observations. It is a panoramic view of the neighboring Andromeda galaxy, located 2.5 million light-years away. It took over 10 years to make this vast and colorful portrait of the galaxy, requiring over 600 Hubble overlapping snapshots that were challenging to stitch together. The galaxy is so close to us, that in angular size it is six times the apparent diameter of the full Moon, and can be seen with the unaided eye. For Hubble’s pinpoint view, that’s a lot of celestial real estate to cover. This stunning, colorful mosaic captures the glow of 200 million stars. That’s still a fraction of Andromeda’s population. And the stars are spread across about 2.5 billion pixels. The detailed look at the resolved stars will help astronomers piece together the galaxy’s past history that includes mergers with smaller satellite galaxies.
NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI)

Without Andromeda as a proxy for spiral galaxies in the universe at large, astronomers would know much less about the structure and evolution of our own Milky Way. That’s because we are embedded inside the Milky Way. This is like trying to understand the layout of New York City by standing in the middle of Central Park.

“With Hubble we can get into enormous detail about what’s happening on a holistic scale across the entire disk of the galaxy. You can’t do that with any other large galaxy,” said principal investigator Ben Williams of the University of Washington. Hubble’s sharp imaging capabilities can resolve more than 200 million stars in the Andromeda galaxy, detecting only stars brighter than our Sun. They look like grains of sand across the beach. But that’s just the tip of the iceberg. Andromeda’s total population is estimated to be 1 trillion stars, with many less massive stars falling below Hubble’s sensitivity limit.

Photographing Andromeda was a herculean task because the galaxy is a much bigger target on the sky than the galaxies Hubble routinely observes, which are often billions of light-years away. The full mosaic was carried out under two Hubble programs. In total, it required over 1,000 Hubble orbits, spanning more than a decade.

This panorama started with the Panchromatic Hubble Andromeda Treasury (PHAT) program about a decade ago. Images were obtained at near-ultraviolet, visible, and near-infrared wavelengths using the Advanced Camera for Surveys and the Wide Field Camera 3 aboard Hubble to photograph the northern half of Andromeda.

Photo mosaic of Andromeda galaxy and five regions of interest. A spiral galaxy spreads across the width. It’s tilted nearly edge-on to our line of sight, appearing as an extreme oval on its side. Its borders are jagged because the image is a mosaic of smaller, square images. The outer edges are blue, while the inner two-thirds are yellowish with a bright, central core. Dark, dusty clouds wrap around the outer half of the galaxy’s disk. At 10 o'clock, a smaller dwarf elliptical galaxy forms a fuzzy, yellow blob. There are about 200 million stars within the image. The background of space is black. There are what appears to be steps toward the bottom, mainly toward the middle, which indicates where no data were taken. Interesting regions: (a) Clusters of bright blue stars embedded within the galaxy; background galaxies seen much farther away; (b) NGC 206, a concentration of bright blue stars; (c) A young cluster of blue newborn stars; (d) The satellite galaxy M32; (e) Dark dust lanes across myriad yellow stars.
This is the largest photomosaic ever made by the Hubble Space Telescope. The target is the vast Andromeda galaxy that is only 2.5 million light-years from Earth, making it the nearest galaxy to our own Milky Way. Andromeda is seen almost edge-on, tilted by 77 degrees relative to Earth’s view. The galaxy is so large that the mosaic is assembled from approximately 600 separate overlapping fields of view taken over 10 years of Hubble observing — a challenge to stitch together over such a large area. The mosaic image is made up of at least 2.5 billion pixels. Hubble resolves an estimated 200 million stars that are hotter than our Sun, but still a fraction of the galaxy’s total estimated stellar population.

Interesting regions include: (a) Clusters of bright blue stars embedded within the galaxy, background galaxies seen much farther away, and photo-bombing by a couple bright foreground stars that are actually inside our Milky Way; (b) NGC 206 the most conspicuous star cloud in Andromeda; (c) A young cluster of blue newborn stars; (d) The satellite galaxy M32, that may be the residual core of a galaxy that once collided with Andromeda; (e) Dark dust lanes across myriad stars.

NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI)

This program was followed up by the Panchromatic Hubble Andromeda Southern Treasury (PHAST), recently published in The Astrophysical Journal and led by Zhuo Chen at the University of Washington, which added images of approximately 100 million stars in the southern half of Andromeda. This region is structurally unique and more sensitive to the galaxy’s merger history than the northern disk mapped by the PHAT survey.

The combined programs collectively cover the entire disk of Andromeda, which is seen almost edge-on — tilted by 77 degrees relative to Earth’s view. The galaxy is so large that the mosaic is assembled from approximately 600 separate fields of view. The mosaic image is made up of at least 2.5 billion pixels.

The complementary Hubble survey programs provide information about the age, heavy-element abundance, and stellar masses inside Andromeda. This will allow astronomers to distinguish between competing scenarios where Andromeda merged with one or more galaxies. Hubble’s detailed measurements constrain models of Andromeda’s merger history and disk evolution.

A Galactic ‘Train Wreck’

Though the Milky Way and Andromeda formed presumably around the same time many billions of years ago, observational evidence shows that they have very different evolutionary histories, despite growing up in the same cosmological neighborhood. Andromeda seems to be more highly populated with younger stars and unusual features like coherent streams of stars, say researchers. This implies it has a more active recent star-formation and interaction history than the Milky Way.

“Andromeda’s a train wreck. It looks like it has been through some kind of event that caused it to form a lot of stars and then just shut down,” said Daniel Weisz at the University of California, Berkeley. “This was probably due to a collision with another galaxy in the neighborhood.”

A possible culprit is the compact satellite galaxy Messier 32, which resembles the stripped-down core of a once-spiral galaxy that may have interacted with Andromeda in the past. Computer simulations suggest that when a close encounter with another galaxy uses up all the available interstellar gas, star formation subsides.

The Andromeda Galaxy, our closest galactic neighbor, holds over 1 trillion stars and has been a key to unlocking the secrets of the universe. Thanks to NASA’s Hubble Space Telescope, we’re now seeing Andromeda in stunning new detail, revealing its dynamic history and unique structure.
Credit: NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris

“Andromeda looks like a transitional type of galaxy that’s between a star-forming spiral and a sort of elliptical galaxy dominated by aging red stars,” said Weisz. “We can tell it’s got this big central bulge of older stars and a star-forming disk that’s not as active as you might expect given the galaxy’s mass.”

“This detailed look at the resolved stars will help us to piece together the galaxy’s past merger and interaction history,” added Williams.

Hubble’s new findings will support future observations by NASA’s James Webb Space Telescope and the upcoming Nancy Grace Roman Space Telescope. Essentially a wide-angle version of Hubble (with the same sized mirror), Roman will capture the equivalent of at least 100 high-resolution Hubble images in a single exposure. These observations will complement and extend Hubble’s huge dataset.

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

Explore More

Media Contact:

Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight CenterGreenbelt, MD

Ray Villard
Space Telescope Science Institute, Baltimore, MD

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Images a Peculiar Spiral
      This NASA/ESA Hubble Space Telescope image features a peculiar spiral galaxy called Arp 184 or NGC 1961. ESA/Hubble & NASA, J. Dalcanton, R. J. Foley (UC Santa Cruz), C. Kilpatrick A beautiful but skewed spiral galaxy dazzles in this NASA/ESA Hubble Space Telescope image. The galaxy, called Arp 184 or NGC 1961, sits about 190 million light-years away from Earth in the constellation Camelopardalis (The Giraffe).
      The name Arp 184 comes from the Atlas of Peculiar Galaxies compiled by astronomer Halton Arp in 1966. It holds 338 galaxies that are oddly shaped and tend to be neither entirely elliptical nor entirely spiral-shaped. Many of the galaxies are in the process of interacting with other galaxies, while others are dwarf galaxies without well-defined structures. Arp 184 earned its spot in the catalog thanks to its single broad, star-speckled spiral arm that appears to stretch toward us. The galaxy’s far side sports a few wisps of gas and stars, but it lacks a similarly impressive spiral arm.
      This Hubble image combines data from three Snapshot observing programs, which are short observations that slotted into time gaps between other proposals. One of the three programs targeted Arp 184 for its peculiar appearance. This program surveyed galaxies listed in the Atlas of Peculiar Galaxies as well as A Catalogue of Southern Peculiar Galaxies and Associations, a similar catalog compiled by Halton Arp and Barry Madore.
      The remaining two Snapshot programs looked at the aftermath of fleeting astronomical events like supernovae and tidal disruption events — like when a supermassive black hole rips a star apart after it wanders too closely. Since Arp 184 hosted four known supernovae in the past three decades, it is a rich target for a supernova hunt.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated May 01, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Tracing the Growth of Galaxies



      Reshaping Our Cosmic View: Hubble Science Highlights


      View the full article
    • By NASA
      ESA/Hubble & NASA, L. C. Ho, D. Thilker Today’s rather aquatic-themed NASA/ESA Hubble Space Telescope image features the spiral galaxy Messier 77, also known as the Squid Galaxy, which sits 45 million light-years away in the constellation Cetus (The Whale).
      The designation Messier 77 comes from the galaxy’s place in the famous catalog compiled by the French astronomer Charles Messier. Another French astronomer, Pierre Méchain, discovered the galaxy in 1780. Both Messier and Méchain were comet hunters who cataloged nebulous objects that could be mistaken for comets.
      Messier, Méchain, and other astronomers of their time mistook the Squid Galaxy for either a spiral nebula or a star cluster. This mischaracterization isn’t surprising. More than a century would pass between the discovery of the Squid Galaxy and the realization that the ‘spiral nebulae’ scattered across the sky were not part of our galaxy but were in fact separate galaxies millions of light-years away. The Squid Galaxy’s appearance through a small telescope — an intensely bright center surrounded by a fuzzy cloud — closely resembles one or more stars wreathed in a nebula.
      The name ‘Squid Galaxy’ is recent, and stems from the extended, filamentary structure that curls around the galaxy’s disk like the tentacles of a squid. The Squid Galaxy is a great example of how advances in technology and scientific understanding can completely change our perception of an astronomical object — and even what we call it!
      Hubble previously released an image of M77 in 2013. This new image incorporates recent observations made with different filters and updated image processing techniques which allow astronomers to see the galaxy in more detail.
      View the full article
    • By USH
      Shape-Shifting Materials are advanced, adaptive materials capable of changing their physical form, embedding sensors and circuits directly into their structure, and even storing energy,  all without traditional wiring. Lockheed Martin is at the forefront of developing these futuristic materials, raising questions about the possible extraterrestrial origin of this technology. 

      In a previous article, we discussed why suppressed exotic technologies are suddenly being disclosed. One company that frequently comes up in this conversation is Lockheed Martin, the American defense and aerospace giant known for pushing the boundaries of aviation and space innovation. 
      Imagine an aircraft that can grow its own skin, embed sensors into its body, store energy without wires, and even shift its shape mid-flight to adapt to changing conditions. This isn’t science fiction anymore, Lockheed Martin’s cutting-edge research is turning these futuristic concepts into reality. 
      But where is all this coming from? 
      The rapid development and creativity behind Lockheed Martin’s projects raise intriguing questions. Whistleblowers like David Grusch have recently alleged that Lockheed Martin has had access to recovered UFO materials for decades. Supporting this, Don Phillips,  a former Lockheed engineer,  confirmed years ago that exotic materials have been held and studied by the company since at least the 1950s. 
      This suggests that for over half a century, Lockheed has secretly been engaged in researching and reverse-engineering off-world technologies. It's possible that the breakthroughs we’re seeing today are the result of this hidden legacy. Ben Rich, former head of Lockheed’s Skunk Works division, famously hinted at this when he said, "We now have the technology to take ET home." 
      One particularly stunning development involves "smart" materials that behave almost like muscles, allowing aircraft structures to morph in real-time. These materials enable a craft to fine-tune its aerodynamics on the fly, adjusting instantly to turbulence, speed shifts, or mission-specific demands. 
      Lockheed’s innovations go even further. By embedding carbon nanotubes, extremely strong and highly conductive microscopic structure, directly into the material, they have created surfaces that can transfer information and power without traditional wiring. In these next-generation aircraft, the "skin" itself acts as the nervous system, the energy grid, and the sensor network all at once. 
      You can only imagine the kinds of technologies that have been developed over the years through the reverse engineering of exotic materials and recovered extraterrestrial craft. Yet, governments and space agencies remain tight-lipped about the existence of advanced alien civilizations, who likely introduced these techniques to Earth unintentionally.
        View the full article
    • By NASA
      This NASA/ESA Hubble Space Telescope image features the globular cluster Messier 72 (M72).ESA/Hubble & NASA, A. Sarajedini, G. Piotto, M. Libralato As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) shared new images that revisited stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.
      ESA/Hubble released new images of NGC 346, the Sombrero Galaxy, and the Eagle Nebula earlier in the month. Now they are revisiting the star cluster Messier 72 (M72).
      M72 is a collection of stars, formally known as a globular cluster, located in the constellation Aquarius roughly 50,000 light-years from Earth. The intense gravitational attraction between the closely packed stars gives globular clusters their regular, spherical shape. There are roughly 150 known globular clusters associated with the Milky Way galaxy.
      The striking variety in the color of the stars in this image of M72, particularly compared to the original image, results from the addition of ultraviolet observations to the previous visible-light data. The colors indicate groups of different types of stars. Here, blue stars are those that were originally more massive and have reached hotter temperatures after burning through much of their hydrogen fuel; the bright red objects are lower-mass stars that have become red giants. Studying these different groups help astronomers understand how globular clusters, and the galaxies they were born in, initially formed.
      Pierre Méchain, a French astronomer and colleague of Charles Messier, discovered M72 in 1780. It was the first of five star clusters that Méchain would discover while assisting Messier. They recorded the cluster as the 72nd entry in Messier’s famous collection of astronomical objects. It is also one of the most remote clusters in the catalog.
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light
      This NASA/ESA Hubble Space Telescope image features the globular cluster Messier 72 (M72). ESA/Hubble & NASA, A. Sarajedini, G. Piotto, M. Libralato As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) shared new images that revisited stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.
      ESA/Hubble released new images of NGC 346, the Sombrero Galaxy, and the Eagle Nebula earlier in the month. Now they are revisiting the star cluster Messier 72 (M72).
      M72 is a collection of stars, formally known as a globular cluster, located in the constellation Aquarius roughly 50,000 light-years from Earth. The intense gravitational attraction between the closely packed stars gives globular clusters their regular, spherical shape. There are roughly 150 known globular clusters associated with the Milky Way galaxy.
      The striking variety in the color of the stars in this image of M72, particularly compared to the original image, results from the addition of ultraviolet observations to the previous visible-light data. The colors indicate groups of different types of stars. Here, blue stars are those that were originally more massive and have reached hotter temperatures after burning through much of their hydrogen fuel; the bright red objects are lower-mass stars that have become red giants. Studying these different groups help astronomers understand how globular clusters, and the galaxies they were born in, initially formed.
      Pierre Méchain, a French astronomer and colleague of Charles Messier, discovered M72 in 1780. It was the first of five star clusters that Méchain would discover while assisting Messier. They recorded the cluster as the 72nd entry in Messier’s famous collection of astronomical objects. It is also one of the most remote clusters in the catalog.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Apr 25, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Globular Clusters Goddard Space Flight Center Star Clusters Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Star Clusters



      Hubble’s 35th Anniversary



      Hubble’s Night Sky Challenge


      View the full article
  • Check out these Videos

×
×
  • Create New...