Members Can Post Anonymously On This Site
Aerospace Latin America: A History
-
Similar Topics
-
By NASA
4 Min Read GVIS History
As part of NASA Glenn’s Scientific Computing and Visualization Team, the GVIS Lab has a storied visual and technological history. Credits: NASA GVIS: the ICARE Era
In 1982, a $20 million supercomputer was brought to NASA Glenn. Scientists at NASA Glenn were becoming increasingly reliant on computer simulations to test their experiments. Advancements in computer technology allowed a different type of testing environment — one that revolved around virtual models and data over physical observation. The benefits of this method included a decrease in costs, a decrease in associated risk, faster turnaround, and more data.
High Definition Video System (HDVS)A High Definition Video System (HDVS) in the early Graphics and Visualization Lab (GVIS). NASA High Definition Video System (HDVS) in the LabNASA employee in early Graphics and Visualization Lab (GVIS) setup, containing High Definition Video Systems (HDVS). NASA Early Graphics and Visualization Lab (GVIS)Early Graphics and Visualization Lab (GVIS) setup, which housed original analog processing hardware. NASA Cray 1-S/2200 SupercomputerThe original Cray 1-S/2200 Supercomputer in the Research and Analysis Center in 1982.NASA But this method of experimentation created a problem: With data-point counts somewhere in the millions, it was a challenge for scientists to even begin to look at their own collected data. In short, there was simply too much data to be analyzed. To solve this problem, NASA Glenn built the Interactive Computer Aided Research Engineering system (ICARE) in the center’s Research Analysis Center.
Taking up several rooms, consisting of 22 total workstations, and costing a grand total of $20 million, the ICARE system was a way for scientists to examine their data through the aid of supercomputer visualizations. Using both graphical and modular methods, ICARE’s visualizations revealed and shared information in ways that traditional methods could not match.
The construction and implementation of the ICARE system was revolutionary to both the center and NASA as a whole. Before 1982, NASA already had an established interest in powerful computers; however, the ICARE system took NASA into the era of supercomputing. ICARE also brought increased attention to the value and power of scientific visualization.
Original Processing HardwareOriginal analog Graphics and Visualization Lab (GVIS) processing hardware.NASA ICARE RoomAn ICARE room in the Research and Analysis Center. NASA 1980s VisualizationA typical 1980s visualization at NASA’s Glenn Research Center in Cleveland.NASA GRAPH3DGRAPH3D was an innovative technology in the 1980s that supported shaded surfaces and had a rich set of user-friendly commands.NASA The Creation of GVIS
In 1989, it was time for an upgrade. NASA Glenn wanted the latest scientific visualization technology and techniques for its scientists, so the center expanded the Research Analysis Center to make room for the new Graphics and Visualization Lab (GVIS). The GVIS Lab acquired cutting-edge graphics technology, including studio-quality TV animation and recording equipment, stereographic displays, and image processing systems. Later, the High-Performance Computing Act of 1991 provided funding and opportunities to add high-speed computing, virtual reality, and collaborative visualization to its fleet of tools.
The secure supercomputing space that would eventually become the Graphics and Visualization Lab (GVIS), shown in 1989.NASA During this period, the GVIS Lab was responsible for assisting NASA Glenn scientists who needed help visualizing their data. The lab was also tasked with inventing new visualization techniques and promoting NASA Glenn’s activities though tours, videos, and other outreach programs. Some of the techniques the lab developed included particle tracking, iso-surface contours, and volume visualization. Tour guests included school children, corporate VIPs, local and national politicians, TV news media, and researchers from other national labs. Using state-of-the-art recording and editing hardware, the GVIS Lab regularly shared work both inside and outside of NASA.
As other labs and researchers began to gain access to their own scientific visualization tools, the GVIS Lab shifted its focus to experimenting with virtual reality- and augmented reality-based visualizations.
Jay HorowitzJay Horowitz saw the Graphics and Visualization Lab (GVIS) through its creation and early years at NASA’s Glenn Research Center in Cleveland. NASA Cray X-MP-2 SupercomputerThe Cray X-MP-2 Supercomputer that replaced the 1-S. NASA Early Research and Analysis CenterThe Research and Analysis Center pre-expansion. NASA Research and Analysis CenterThe Research and Analysis Center after the expansion. The Graphics and Visualization Lab (GVIS) is in the upper left corner. NASA Lewis Advanced Cluster Environment (LACE)The Advanced Computational Concepts Lab’s (ACCL) Lewis Advanced Cluster Environment (LACE) in 1993. NASA Mobile Aeronautics Education Laboratory (MAEL) VR Flight SimulatorSetup showing location of the various equipment used in the Mobile Aeronautics Education Laboratory (MAEL) VR Flight Simulator.NASA Mobile Aeronautics Education Laboratory (MAEL) VR Flight SimulatorMAEL (Mobile Aeronautics Education Laboratory) trailer’s flight simulator supported multi-screen panoramic views or head-tracked Head Mounted Displays (HMDs). NASA WrightSimApollo 13 flight director Gene Kranz watches Jim Lovell pilot WrightSim. NASA 100 Years of Flight Gala CelebrationJohn Glenn talks to a Graphics and Visualization Lab (GVIS) programmer during the 2003 “100 Years of Flight Gala Celebration” event at NASA’s Glenn Research Center in Cleveland. NASA VR TreadmillThe concept of the VR treadmill was used to test if duplicating a visual-motor linkage was feasible for long-duration spaceflight. NASA 2000s VisualizationTurn-of-the-century Graphics and Visualization Lab (GVIS) model. NASA 2000s VisualizationTurn-of-the-century Graphics and Visualization Lab (GVIS) model. NASA 2000s Visualization Turn-of-the-century Graphics and Visualization Lab (GVIS) model. NASA Aeroshark ClusterThe Advanced Computational Concepts Lab’s (ACCL) Aeroshark Cluster in 2001. NASA Early 2000s Graphics and Visualization Lab (GVIS)The turn-of-the-century Graphics and Visualization Lab (GVIS), shown in 2004. NASA Advanced Communications Environment (ACE) ClusterThe Advanced Computational Concepts Lab’s (ACCL) Advanced Communications Environment (ACE) Cluster in 2005. NASA Early Computer Automatic Virtual Environment (CAVE)A Graphics and Visualization Lab (GVIS) team member demonstrating the old Computer Automatic Virtual Environment (CAVE). NASA Current Computer Automatic Virtual Environment (CAVE)A Graphics and Visualization Lab (GVIS) intern in the Computer Automatic Virtual Environment (CAVE). NASA GVIS Now
Today, the GVIS Lab has the same mission that it had in 1989: to apply the latest visualization and human interaction technologies to advance NASA’s missions. The team takes pride in pushing the limits of scientific visualization and computer science, helping fellow researchers make sense of their data, and inspiring the next generation through demonstrations and presentations. Computational technology has come a long way since the days of ICARE, but GVIS has continued to explore current and cutting-edge technologies.
In addition to scientific visualization and experimental computational technologies, the GVIS Lab now also specializes in virtual design, interactive 3D simulations, natural user interface development, applications of computer science, and mission scenario visualizations. The team uses the latest edition of 3D programs and VR devices to experiment with how these systems can be used to visualize data, pushing their input and output capabilities.
With all this technology, GVIS also supports the visualization of a wide variety of 3D data and models such as CAD, point clouds, and volume data. Additionally, the lab is capable of high-impact data visualization, web-based visualization, time-accurate data representation, and designing and testing CAD models in virtual reality.
The Graphics and Visualization Lab (GVIS) team attends a STEM outreach event at the Cleveland Museum of Natural History.NASA Public Engagement
Outside of the lab, GVIS has a longstanding history of taking its technology demonstrations across the city, throughout the country, and around the world. The team has extensive experience organizing, presenting, and facilitating STEM-based educational outreach for a variety of different events and venues. Inside the lab, GVIS supports the education and career exploration of its high school and college interns through mentorship, community engagement opportunities, and access to cutting-edge technology.
STEM Engagement EventVisitors interact with the Graphics and Visualization Lab (GVIS) team while attending Score with STEM, an event organized by the Cleveland Cavaliers. NASA/GRC/Jef Janis STEM Engagement EventA visitor interacts with a Graphics and Visualization Lab (GVIS) team member while attending Dino Days at the Cleveland Museum of Natural History. NASA STEM Engagement EventA Graphics and Visualization Lab (GVIS) Intern interacts with visitors at a STEM outreach event. NASA STEM Engagement EventGraphics and Visualization Lab (GVIS) team members attend Women in Aviation Day organized by Women in Aviation International (WAI). NASA GRUVE Lab ToursThe Graphics and Visualization Lab (GVIS) team provides tours of NASA labs and facilities. NASA GVIS Lab ToursA Graphics and Visualization Lab (GVIS) team member demonstrates VR visualizations. NASA GRUVE Lab ToursVisitors interact with a visualization through the CAVE environment at the Graphics and Visualization Lab (GVIS). NASA Contact Us
Need to reach us? You can send an email directly to the GVIS Team (GRC-DL-GVIS@mail.nasa.gov) or to the team leader, Herb Schilling (hschilling@nasa.gov).
Share
Details
Last Updated Jul 23, 2025 Related Terms
Glenn Research Center NASA Centers & Facilities Explore More
3 min read 1942: Engine Roars to Life in First Test at Future NASA Glenn
Article 1 year ago 2 min read NASA Glenn History Includes Contributions of Women in Aerospace Research
Article 3 years ago 3 min read NASA Uses Cleveland Landmark for Microgravity Research in the 1960s
Article 3 years ago Keep Exploring Discover More Topics From NASA
Explore NASA’s History
Glenn Historic Facilities
This collection of webpages was created to document some of the historic facilities formerly located at NASA's Glenn Research Center…
Glenn Historic Preservation
NASA History Series
View the full article
-
By Space Force
Colorado Springs is playing host to the DOD Warrior Games July 18-26, and for the first time, Guardians are among the nearly 200 wounded, ill and injured athletes competing in 11 adaptive sports over nine days.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A collage of artist concepts highlighting the novel approaches proposed by the 2025 NIAC awardees for possible future missions. Through the NASA Innovative Advanced Concepts (NIAC) program, NASA nurtures visionary yet credible concepts that could one day “change the possible” in aerospace, while engaging America’s innovators and entrepreneurs as partners in the journey.
These concepts span various disciplines and aim to advance capabilities such as finding resources on distant planets, making space travel safer and more efficient, and even providing benefits to life here on Earth. The NIAC portfolio of studies also includes several solutions and technologies that could help NASA achieve a future human presence on Mars. One concept at a time, NIAC is taking technology concepts from science fiction to reality.
Breathing beyond Earth
Astronauts have a limited supply of water and oxygen in space, which makes producing and maintaining these resources extremely valuable. One NIAC study investigates a system to separate oxygen and hydrogen gas bubbles in microgravity from water, without touching the water directly. Researchers found the concept can handle power changes, requires less clean water, works in a wide range of temperatures, and is more resistant to bacteria than existing oxygen generation systems for short-term crewed missions. These new developments could make it a great fit for a long trip to Mars.
Newly selected for another phase of study, the team wants to understand how the system will perform over long periods in space and consider ways to simplify the system’s build. They plan to test a large version of the system in microgravity in hopes of proving how it may be a game changer for future missions.
Detoxifying water on Mars
Unlike water on Earth, Mars’ water is contaminated with toxic chemical compounds such as perchlorates and chlorates. These contaminants threaten human health even at tiny concentrations and can easily corrode hardware and equipment. Finding a way to remove contaminates from water will benefit future human explorers and prepare them to live on Mars long term.
Researchers are creating a regenerative perchlorate reduction system that uses perchlorate reduction pathways from naturally occurring bacteria. Perchlorate is a compound comprised of oxygen and chlorine that is typically used for rocket propellant. These perchlorate reduction pathways can be engineered into a type of bacterium that is known for its remarkable resilience, even in the harsh conditions of space. The system would use these enzymes to cause the biochemical reduction of chlorate and perchlorate to chloride and oxygen, eliminating these toxic molecules from the water. With the technology to detoxify water on Mars, humans could thrive on the Red Planet with an abundant water supply.
Tackling deep space radiation exposure
Mitochondria are the small structures within cells often called the “powerhouse,” but what if they could also power human health in space? Chronic radiation exposure is among the many threats to long-term human stays in space, including time spent traveling to and from Mars. One NIAC study explores transplanting new, undamaged mitochondria to radiation-damaged cells and investigates cell responses to relevant radiation levels to simulate deep-space travel. Researchers propose using in vitro human cell models – complex 3D structures grown in a lab to mimic aspects of organs – to demonstrate how targeted mitochondria replacement therapy could regenerate cellular function after acute and long-term radiation exposure.
While still in early stages, the research could help significantly reduce radiation risks for crewed missions to Mars and beyond. Here on Earth, the technology could also help treat a wide variety of age-related degenerative diseases associated with mitochondrial dysfunction.
Suiting up for Mars
Mars is no “walk in the park,” which is why specialized spacesuits are essential for future missions. Engineers propose using a digital template to generate custom, cost-effective, high-performance spacesuits. This spacesuit concept uses something called digital thread technology to protect crewmembers from the extreme Martian environment, while providing the mobility to perform daily Mars exploration endeavors, including scientific excursions.
This now completed NIAC study focused on mapping key spacesuit components and current manufacturing technologies to digital components, identifying technology gaps, benchmarking required capabilities, and developing a conceptional digital thread model for future spacesuit development and operational support. This research could help astronauts suit up for Mars and beyond in a way like never before.
Redefining what’s possible
From studying Mars to researching black holes and monitoring the atmosphere of Venus, NIAC concepts help us push the boundaries of exploration. By collaborating with innovators and entrepreneurs, NASA advances concepts for future and current missions while energizing the space economy.
If you have a visionary idea to share, you can apply to NIAC’s 2026 Phase I solicitation now until July 15.
Facebook logo @NASATechnology @NASA_Technology Explore More
4 min read NASA Tech to Use Moonlight to Enhance Measurements from Space
Article 3 days ago 3 min read NASA’s Lunar Rescue System Challenge Supports Astronaut Safety
Article 6 days ago 2 min read Tuning a NASA Instrument: Calibrating MASTER
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
Share
Details
Last Updated Jun 23, 2025 EditorLoura Hall Related Terms
Space Technology Mission Directorate NASA Innovative Advanced Concepts (NIAC) Program Technology View the full article
-
By NASA
7 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
In the summer 2025 issue of the NASA History Office’s News & Notes newsletter, examples of leadership and critical decision-making in NASA’s history form the unifying theme. Among the topics discussed are NASA’s Shuttle-Centaur program, assessing donations to the NASA Archives, how the discovery of the first exoplanet orbiting a sun-like star catalyzed NASA’s exoplanet program, and Chief of the Medical Operations Office Charles A. Berry’s decisions surrounding crew health when planning the Project Gemini missions.
Volume 42, Number 2
Summer 2025
Featured Articles
From the Chief Historian
By Brian Odom
NASA’s is a history marked by critical decisions. From George Mueller’s 1963 decision for “all up” testing of the Saturn V rocket to Michael Griffin’s 2006 decision to launch a final servicing mission to the Hubble Space Telescope, the agency has continually met key inflection points with bold decisions. These choices, such as the decision to send a crewed Apollo 8 mission around the Moon in December 1968, stand at the center of the agency’s national legacy and promote confidence in times of crisis. Continue Reading
Shuttle-Centaur: Loss of Launch Vehicle Redundancy Leads to Discord
By Robert Arrighi
“Although the Shuttle/Centaur decision was very difficult to make, it is the proper thing to do, and this is the time to do it.” With those words on June 19, 1986, NASA Administrator James Fletcher canceled the intensive effort to integrate the Centaur upper stage with the Space Shuttle to launch the Galileo and Ulysses spacecraft. The decision, which was tied to increased safety measures following the loss of Challenger several months earlier, brought to the forefront the 1970s decision to launch all U.S. payloads with the Space Shuttle. Continue Reading
Lewis Director Andy Stofan speaks at the Shuttle-Centaur rollout ceremony on August 23, 1985 at General Dynamics’s San Diego headquarters. Galileo mission crew members Dave Walker, Rick Hauck, and John Fabian were among those on stage. NASA A View into NASA’s Response to the Apollo 1 Tragedy
By Kate Mankowski
On January 27, 1967, Mission AS-204 (later known as Apollo 1) was conducting a simulated countdown when a fire suddenly broke out in the spacecraft, claiming the lives of astronauts Virgil I. “Gus” Grissom, Edward H. White, and Roger B. Chaffee. The disaster highlighted the risks that come with spaceflight and the work that still needed to be accomplished to meet President Kennedy’s challenge of going to the Moon before the end of the decade. With the complexity of the Apollo spacecraft, discerning the cause of the fire proved to be incredibly difficult. Continue Reading
The Fight to Fund AgRISTARS
By Brad Massey
Robert MacDonald, the manager of NASA’s Large Area Crop Inventory Experiment (LACIE), was not pleased in January 1978 after he read a draft copy of the U.S. General Accounting Office’s (GAO’s) “Crop Forecasting by Satellite: Progress and Problems” report. The draft’s authors argued that LACIE had not achieved its goals of accurately predicting harvest yields in the mid-1970s. Therefore, congressional leaders should “be aware of the disappointing performance of LACIE to date when considering the future direction of NASA’s Landsat program and the plans of the Department of Agriculture.” Continue Reading
The Hubble Space Telescope: The Right Project at the Right Time
By Jillian Rael
This year, NASA commemorates 35 years of the Hubble Space Telescope’s study of the cosmos. From observations of never-before-seen phenomena within our solar system, to the discovery of distant galaxies, the confirmation of the existence of supermassive black holes, and precision measurements of the universe’s expansion, Hubble has made incredible contributions to science, technology, and even art. Yet, for all its contemporary popularity, the Hubble program initially struggled for congressional approval and consequential funding. For its part, NASA found new ways to compromise and cut costs, while Congress evaluated national priorities and NASA’s other space exploration endeavors against the long-range value of Hubble. Continue Reading
Within the tempestuous Carina Nebula lies “Mystic Mountain.”NASA/ESA/M. Livio/Hubble 20th Anniversary Team Appraisal: The Science and Art of Assessing Donations to the NASA Archives
By Alan Arellano
The major functions of an archivist center include appraising, arranging, describing, preserving, and providing access to historical records and documents. While together these are pillars of archival science, they are more of an art than a science in their application, fundamentally necessitating skilled decision making. Throughout the NASA archives, staff members make these decisions day in and day out. Continue Reading
Orbit Shift: How 50 Pegasi b Helped Pull NASA Toward the Stars in the 1990s
By Lois Rosson
On October 20, 1995, the New York Times reported the detection of a distant planet orbiting a Sun-like star. The star, catalogued as 51 Pegasi by John Flamsteed in the 18th century, was visible to the naked eye as part of the constellation Pegasus—and had wobbled on its axis just enough that two Swiss astronomers were able to deduce the presence of another object exerting its gravitational pull on the star’s rotation. The discovery was soon confirmed by other astronomers, and 51 Pegasi b was heralded as the first confirmed exoplanet orbiting a star similar to our own Sun. Continue Reading
Detail from an infographic about 51 Pegasi b and the significance of its discovery.NASA Four, Eight, Fourteen Days: Charles A. Berry, Gemini, and the Critical Steps to Living and Working in Space
By Jennifer Ross-Nazzal
In 1963, critical decisions had to be made about NASA’s upcoming Gemini missions if the nation were to achieve President John F. Kennedy’s lunar goals. Known as the bridge to Apollo, Project Gemini was critical to landing a man on the Moon by the end of the decade and returning him safely to Earth. The project would demonstrate that astronauts could rendezvous and dock their spacecraft to another space vehicle and give flight crews the opportunity to test the planned extravehicular capabilities in preparation for walking on the lunar surface on future Apollo flights. Perhaps most importantly, Gemini had to show that humans could live and work in space for long periods of time, a fiercely debated topic within and outside of the agency. Continue Reading
Dr. Charles Berry prepares to check the blood pressure of James A. McDivitt, Command Pilot for the Gemini IV mission. McDivitt is on the tilt table at the Aero Medical Area, Merritt Island, FL, where he and Gemini IV pilot Edward H. White II underwent preflight physicals in preparation for their four-day spaceflight.NASA Imagining Space: The Life and Art of Robert McCall
By Sandra Johnson
As we walked into Bob McCall’s Arizona home, it quickly became obvious that two talented and creative people lived there. Tasked with interviewing one of the first artists to be invited to join the NASA Art Program, our oral history team quickly realized the session with McCall would include a unique perspective on NASA’s history. We traveled to Arizona in the spring of 2000 to capture interviews with some of the pioneers of spaceflight and had already talked to an eclectic group of subjects in their homes, including a flight controller for both Gemini and Apollo, an astronaut who had flown on both Skylab and Space Shuttle missions, a former NASA center director, and two former Women’s Airforce Service Pilots (WASPs) who ferried airplanes during WWII. However, unlike most interviews, the setting itself provided a rare glimpse into the man and his inspiration. Continue Reading
Inside the Archives: Biomedical Branch Files
By Alejandra Lopez
The Biomedical Branch Files (1966–2008) in the Johnson Space Center archives showcase the inner workings of a NASA office established to perform testing to provide a better understanding of the impacts of spaceflight on the human body. Ranging from memos and notes to documents and reports, this collection is an invaluable resource on the biomedical research done with NASA’s Apollo, Skylab, Space Shuttle, and Space Station projects. Files in the collection cover work done by groups within the branch such as the Toxicology, Microbiology, Clinical, and Biochemistry Laboratories. It also reveals the branch’s evolution and changes in its decision-making process over the years. Continue Reading
Dr. Carolyn S. Huntoon, shown here in 1972, became the Biomedical Branch’s first chief in 1977.NASA Download the Summer 2025 Edition More Issues of NASA History News and Notes Share
Details
Last Updated Jun 20, 2025 EditorMichele Ostovar Related Terms
NASA History Newsletters Explore More
5 min read NASA History News and Notes–Spring 2025
Article 3 months ago 6 min read NASA History News and Notes – Winter 2024
Article 6 months ago 7 min read NASA History News and Notes – Fall 2024
Article 9 months ago Keep Exploring Discover Related Topics
NASA History
History Publications and Resources
NASA Archives
NASA Oral Histories
View the full article
-
By NASA
Acting NASA Administrator Janet Petro and Anke Kaysser-Pyzalla, chair, Executive Board, DLR (German Aerospace Center, or Deutsches Zentrum für Luft- und Raumfahrt), signed an agreement June 16, 2025, to continue a partnership on space medicine research. With this agreement, DLR will provide new radiation sensors aboard the Orion spacecraft during NASA’s Artemis II mission. Scheduled for launch no later than April 2026, Artemis II will mark the first test flight with crew under Artemis.Credit: DLR While attending the Paris Air Show June 16, NASA acting Administrator Janet Petro signed an agreement with DLR (German Aerospace Center, or Deutsches Zentrum für Luft- und Raumfahrt) to continue a partnership in space medicine research. This renewed collaboration builds on previous radiation mitigation efforts for human spaceflight. As NASA advances the Trump-Vance Administration’s goals for exploration on the Moon and Mars, minimizing exposure to space radiation is one of the key areas the agency is working to protect crew on long duration missions.
With this agreement, DLR will leverage its human spaceflight expertise and provide new radiation sensors aboard the Orion spacecraft during NASA’s Artemis II mission, building on previous work in this area during the Artemis I mission. Scheduled for launch no later than April 2026, Artemis II will mark the first test flight with crew under Artemis.
“In keeping with the historic agreements NASA has made with international partners as a part of Artemis, I am pleased to sign a new NASA-DLR joint agreement today, to enable radiation research aboard Artemis II,” said acting NASA Administrator Janet Petro. “The German Aerospace Center has been a valuable partner in Artemis, having previously worked with NASA to test technology critical to our understanding of radiation on humans aboard an Orion spacecraft on Artemis I and providing a CubeSat as part of Artemis II. Following a productive meeting between President Trump and German Chancellor Merz earlier this month, I am excited to build upon our great partnership with Germany.”
During the Artemis II mission’s planned 10-day journey around the Moon and back, four of DLR’s newly developed M-42 extended (M-42 EXT) radiation detectors will be on board, contributing vital data to support astronaut safety. This next-generation device represents a new phase of research as NASA and DLR continue working together to safeguard human health in space.
Under the leadership of President Trump, America’s Artemis campaign has reignited NASA’s ambition, sparking international cooperation and cutting-edge innovation. The continued partnership with DLR and the deployment of their advanced M-42 EXT radiation detectors aboard Artemis II exemplifies how the Trump-Vance Administration is leading a Golden Era of Exploration and Innovation that puts American astronauts on the path to the Moon, Mars, and beyond.
“To develop effective protective measures against the impact of space radiation on the human body, comprehensive and coherent radiation measurements in open space are essential,” says Anke Pagels-Kerp, divisional board member for space at DLR. “At the end of 2022, Artemis I carried 12,000 passive and 16 active detectors inside the Helga and Zohar mannequins, which flew aboard the Orion spacecraft as part of DLR’s MARE project. These provided a valuable dataset – the first continuous radiation measurements ever recorded beyond low Earth orbit. We are now excited to take the next step together with NASA and send our upgraded radiation detectors around the Moon on the Artemis II mission.”
Through the Artemis campaign, the agency will establish a long-term presence on the Moon for scientific exploration with our commercial and international partners, learn how to live and work away from home, and prepare for future human exploration of Mars.
For more information about Artemis, visit:
https://www.nasa.gov/artemis
-end-
Bethany Stevens / Rachel Kraft
Headquarters
202-358-1600
bethany.c.stevens@nasa.gv / rachel.h.kraft@nasa.gov
Share
Details
Last Updated Jun 17, 2025 LocationNASA Headquarters Related Terms
Artemis Artemis 2 NASA Headquarters View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.