Jump to content

Recommended Posts

  • Publishers
Posted
7 Min Read

NASA Celebrates Edwin Hubble’s Discovery of a New Universe

Ground-based image of the Andromeda Galaxy stretches from lower left to upper right. A white arrow points to the location of the Hubble observations. Above the galaxy are four boxes containing Hubble images of the variable star at different luminosities.
The Cepheid variable star, called V1, in the neighboring Andromeda galaxy.
Credits: NASA, ESA, Hubble Heritage Team (STScI/AURA); Acknowledgement: R. Gendler

For humans, the most important star in the universe is our Sun. The second-most important star is nestled inside the Andromeda galaxy. Don’t go looking for it — the flickering star is 2.2 million light-years away, and is 1/100,000th the brightness of the faintest star visible to the human eye.

Yet, a century ago, its discovery by Edwin Hubble, then an astronomer at Carnegie Observatories, opened humanity’s eyes as to how large the universe really is, and revealed that our Milky Way galaxy is just one of hundreds of billions of galaxies in the universe ushered in the coming-of-age for humans as a curious species that could scientifically ponder our own creation through the message of starlight. Carnegie Science and NASA are celebrating this centennial at the 245th meeting of the American Astronomical Society in Washington, D.C.

The seemingly inauspicious star, simply named V1, flung open a Pandora’s box full of mysteries about time and space that are still challenging astronomers today. Using the largest telescope in the world at that time, the Carnegie-funded 100-inch Hooker Telescope at Mount Wilson Observatory in California, Hubble discovered the demure star in 1923. This rare type of pulsating star, called a Cepheid variable, is used as milepost markers for distant celestial objects. There are no tape-measures in space, but by the early 20th century Henrietta Swan Leavitt had discovered that the pulsation period of Cepheid variables is directly tied to their luminosity.

Many astronomers long believed that the edge of the Milky Way marked the edge of the entire universe. But Hubble determined that V1, located inside the Andromeda “nebula,” was at a distance that far exceeded anything in our own Milky Way galaxy. This led Hubble to the jaw-dropping realization that the universe extends far beyond our own galaxy.

In fact Hubble had suspected there was a larger universe out there, but here was the proof in the pudding. He was so amazed he scribbled an exclamation mark on the photographic plate of Andromeda that pinpointed the variable star.

Ground-based image of the Andromeda Galaxy stretches from lower left to upper right. A white arrow points to the location of the Hubble observations. Above the galaxy are four boxes containing Hubble images of the variable star at different luminosities.
In commemoration of Edwin Hubble’s discovery of a Cepheid variable class star, called V1, in the neighboring Andromeda galaxy 100 years ago, astronomers partnered with the American Association of Variable Star Observers (AAVSO) to study the star. AAVSO observers followed V1 for six months, producing a plot, or light curve, of the rhythmic rise and fall of the star’s light. Based on this data, the Hubble Space Telescope was scheduled to capture the star at its dimmest and brightest light. Edwin Hubble’s observations of V1 became the critical first step in uncovering a larger, grander universe than some astronomers imagined at the time. Once dismissed as a nearby “spiral nebula” measurements of Andromeda with its embedded Cepheid star served as a stellar milepost marker. It definitively showed that Andromeda was far outside of our Milky Way. Edwin Hubble went on to measure the distances to many galaxies beyond the Milky Way by finding Cepheid variables within those levels. The velocities of those galaxies, in turn, allowed him to determine that the universe is expanding.
NASA, ESA, Hubble Heritage Team (STScI/AURA); Acknowledgment: R. Gendler

As a result, the science of cosmology exploded almost overnight. Hubble’s contemporary, the distinguished Harvard astronomer Harlow Shapley, upon Hubble notifying him of the discovery, was devastated. “Here is the letter that destroyed my universe,” he lamented to fellow astronomer Cecilia Payne-Gaposchkin, who was in his office when he opened Hubble’s message.

Just three years earlier, Shapley had presented his observational interpretation of a much smaller universe in a debate one evening at the Smithsonian Museum of Natural History in Washington. He maintained that the Milky Way galaxy was so huge, it must encompass the entirety of the universe. Shapley insisted that the mysteriously fuzzy “spiral nebulae,” such as Andromeda, were simply stars forming on the periphery of our Milky Way, and inconsequential.

Little could Hubble have imagined that 70 years later, an extraordinary telescope named after him, lofted hundreds of miles above the Earth, would continue his legacy. The marvelous telescope made “Hubble” a household word, synonymous with wonderous astronomy.

Today, NASA’s Hubble Space Telescope pushes the frontiers of knowledge over 10 times farther than Edwin Hubble could ever see. The space telescope has lifted the curtain on a compulsive universe full of active stars, colliding galaxies, and runaway black holes, among the celestial fireworks of the interplay between matter and energy.

Edwin Hubble was the first astronomer to take the initial steps that would ultimately lead to the Hubble Space Telescope, revealing a seemingly infinite ocean of galaxies. He thought that, despite their abundance, galaxies came in just a few specific shapes: pinwheel spirals, football-shaped ellipticals, and oddball irregular galaxies. He thought these might be clues to galaxy evolution – but the answer had to wait for the Hubble Space Telescope’s legendary Hubble Deep Field in 1994.

The most impactful finding that Edwin Hubble’s analysis showed was that the farther the galaxy is, the faster it appears to be receding from Earth. The universe looked like it was expanding like a balloon. This was based on Hubble tying galaxy distances to the reddening of light — the redshift – that proportionally increased the father away the galaxies are.

The redshift data were first collected by Lowell Observatory astronomer Vesto Slipher, who spectroscopically studied the “spiral nebulae” a decade before Hubble. Slipher did not know they were extragalactic, but Hubble made the connection. Slipher first interpreted his redshift data an example of the Doppler effect. This phenomenon is caused by light being stretched to longer, redder wavelengths if a source is moving away from us. To Slipher, it was curious that all the spiral nebulae appeared to be moving away from Earth.

Two years prior to Hubble publishing his findings, the Belgian physicist and Jesuit priest Georges Lemaître analyzed the Hubble and Slifer observations and first came to the conclusion of an expanding universe. This proportionality between galaxies’ distances and redshifts is today termed Hubble–Lemaître’s law.

Because the universe appeared to be uniformly expanding, Lemaître further realized that the expansion rate could be run back into time – like rewinding a movie – until the universe was unimaginably small, hot, and dense. It wasn’t until 1949 that the term “big bang” came into fashion.

This was a relief to Edwin Hubble’s contemporary, Albert Einstein, who deduced the universe could not remain stationary without imploding under gravity’s pull. The rate of cosmic expansion is now known as the Hubble Constant.

Ironically, Hubble himself never fully accepted the runaway universe as an interpretation of the redshift data. He suspected that some unknown physics phenomenon was giving the illusion that the galaxies were flying away from each other. He was partly right in that Einstein’s theory of special relativity explained redshift as an effect of time-dilation that is proportional to the stretching of expanding space. The galaxies only appear to be zooming through the universe. Space is expanding instead.

Compass and scale image titled “Cepheid Variable Star V1 in M31 HST WFC3/UVIS.” Four boxes each showing a bright white star in the center surrounded by other stars. Each box has a correlating date at the bottom: Dec. 17, 2020, Dec. 21, 2010, Dec. 30, 2019, and Jan. 26, 2011. The center star in the boxes appears brighter with each passing date.
Compass and scale image titled “Cepheid Variable Star V1 in M31 HST WFC3/UVIS.” Four boxes each showing a bright white star in the center surrounded by other stars. Each box has a correlating date at the bottom: Dec. 17, 2020, Dec. 21, 2010, Dec. 30, 2019, and Jan. 26, 2011. The center star in the boxes appears brighter with each passing date.
NASA, ESA, Hubble Heritage Project (STScI, AURA)

After decades of precise measurements, the Hubble telescope came along to nail down the expansion rate precisely, giving the universe an age of 13.8 billion years. This required establishing the first rung of what astronomers call the “cosmic distance ladder” needed to build a yardstick to far-flung galaxies. They are cousins to V1, Cepheid variable stars that the Hubble telescope can detect out to over 100 times farther from Earth than the star Edwin Hubble first found.

Astrophysics was turned on its head again in 1998 when the Hubble telescope and other observatories discovered that the universe was expanding at an ever-faster rate, through a phenomenon dubbed “dark energy.” Einstein first toyed with this idea of a repulsive form of gravity in space, calling it the cosmological constant.

Even more mysteriously, the current expansion rate appears to be different than what modern cosmological models of the developing universe would predict, further confounding theoreticians. Today astronomers are wrestling with the idea that whatever is accelerating the universe may be changing over time. NASA’s Roman Space Telescope, with the ability to do large cosmic surveys, should lead to new insights into the behavior of dark matter and dark energy. Roman will likely measure the Hubble constant via lensed supernovae.

This grand century-long adventure, plumbing depths of the unknown, began with Hubble photographing a large smudge of light, the Andromeda galaxy, at the Mount Wilson Observatory high above Los Angeles.

In short, Edwin Hubble is the man who wiped away the ancient universe and discovered a new universe that would shrink humanity’s self-perception into being an insignificant speck in the cosmos.

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

Explore More

Media Contact:

Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight CenterGreenbelt, MD

Ray Villard
Space Telescope Science Institute, Baltimore, MD

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Photo of Matt Anderson Acting NASA Administrator Janet Petro issued the following statement regarding the nomination by President Donald Trump of Matt Anderson Wednesday to serve as the agency’s deputy administrator:
      “As a retired United States Air Force colonel and executive of the Space Force Association, Matt Anderson brings extensive knowledge of space operations, aeronautics expertise, and industry experience. If confirmed, he would join NASA’s leadership team at a time when partnerships and a sharpened focus on mission are essential to our continued success. Along with President Trump’s nominee to lead NASA, Jared Isaacman, he will strengthen collaboration across sectors and help NASA advance exploration, serve the American people, and deliver results for the benefit of all.”
      Throughout his over 24-year tenure in the U.S. Air Force, Anderson culminated his career as the U.S. Transportation Command’s senior liaison officer to North American Aerospace Defense Command (NORAD), U.S. Northern Command (USNORTHCOM), and U.S. Space Command (USSPACECOM). He retired as a colonel Oct. 1, 2021. Anderson is currently a vice president and Space Force & Air Force client executive at CACI. He also serves as the chief growth officer at the Space Force Association.
      An alum of the U.S. Air Force Academy, Embry-Riddle Aeronautical University, and the University of Colorado at Colorado Springs, Anderson holds degrees in biology, aeronautical science, and leadership & counseling. In 2024, Anderson was named by the Washington Exec as one of their “Top Space Execs to Watch.”
      For more about NASA’s mission, visit:
      https://www.nasa.gov
      -end-
      Bethany Stevens / Amber Jacobson
      Headquarters, Washington
      202-358-1600
      bethany.c.stevens@nasa.gov / amber.c.jacobson@nasa.gov
      Share
      Details
      Last Updated May 07, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Leadership
      View the full article
    • By NASA
      One half of NASA’s nearly complete Nancy Grace Roman Space Telescope just passed a lengthy test to ensure it will function properly in the space environment. This milestone keeps Roman well on track for its target launch by May 2027, with the team aiming for as early as fall 2026.
      This photo shows half of the NASA’s Nancy Grace Roman observatory — the outer barrel assembly, deployable aperture cover, and test solar arrays — fully deployed in a thermal chamber at NASA’s Goddard Space Flight Center in Greenbelt, Md., for environmental testing. Credit: NASA/Sydney Rohde “This milestone tees us up to attach the flight solar array sun shield to the outer barrel assembly, and deployable aperture cover, which we’ll begin this month,” said Jack Marshall, who leads integration and testing for these elements at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Then we’ll complete remaining environmental tests for the flight assembly before moving on to connect Roman’s two major assemblies and run the full observatory through testing, and then we’ll be ready to launch!”
      Prior to this thermal testing, technicians integrated Roman’s deployable aperture cover, a visor-like sunshade, to the outer barrel assembly, which will house the telescope and instruments, in January, then added test solar panels in March. They moved this whole structure into the Space Environment Simulator test chamber at NASA Goddard in April.
      There, it was subjected to the hot and cold temperatures it will experience in space. Next, technicians will join Roman’s flight solar panels to the outer barrel assembly and sunshade. Then the structure will undergo a suite of assessments, including a shake test to ensure it can withstand the vibrations experienced during launch.
      This photo captures the installation of the test solar panels for NASA’s Nancy Grace Roman Space Telescope, which took place in March. One panel is lifted in the center of the frame on its way to being attached to the outer barrel assembly at right. The deployable aperture cover is stowed on the front of the outer barrel assembly, and the other half of the observatory — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — appears at the left of the photo.Credit: NASA/Jolearra Tshiteya Meanwhile, Roman’s other major portion — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — will undergo its own shake test, along with additional assessments. Technicians will install the lower instrument sun shade and put this half of the observatory through a thermal vacuum test in the Space Environment Simulator.
      “The test verifies the instruments will remain at stable operating temperatures even while the Sun bakes one side of the observatory and the other is exposed to freezing conditions — all in a vacuum, where heat doesn’t flow as readily as it does through air,” said Jeremy Perkins, an astrophysicist serving as Roman’s observatory integration and test scientist at NASA Goddard. Keeping the instrument temperatures stable ensures their readings will be precise and reliable.
      Technicians are on track to connect Roman’s two major parts in November, resulting in a complete observatory by the end of the year. Following final tests, Roman is expected to ship to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026. Roman remains on schedule for launch by May 2027, with the team aiming for launch as early as fall 2026.
      This infographic shows the two major subsystems that make up NASA’s Nancy Grace Roman Space Telescope. The subsystems are each undergoing testing prior to being joined together this fall.Credit: NASA’s Goddard Space Flight Center To virtually tour an interactive version of the telescope, visit:
      https://roman.gsfc.nasa.gov/interactive
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      ​​Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center
      301-286-1940
      Share
      Details
      Last Updated May 07, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Goddard Space Flight Center Technology Explore More
      6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 2 weeks ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
      Article 2 months ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 10 months ago View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read New Visualization From NASA’s Webb Telescope Explores Cosmic Cliffs
      The landscape of “mountains” and “valleys” known as the Cosmic Cliffs is actually a portion of the nebula Gum 31, which contains a young star cluster called NGC 3324. Both Gum 31 and NGC 3324 are part of a vast star-forming region known as the Carina Nebula Complex. Credits:
      NASA, ESA, CSA, STScI. In July 2022, NASA’s James Webb Space Telescope made its public debut with a series of breathtaking images. Among them was an ethereal landscape nicknamed the Cosmic Cliffs. This glittering realm of star birth is the subject of a new 3D visualization derived from the Webb data. The visualization, created by NASA’s Universe of Learning and titled “Exploring the Cosmic Cliffs in 3D,” breathes new life into an iconic Webb image.
      It is being presented today at a special event hosted by the International Planetarium Society to commemorate the 100th anniversary of the first public planetarium in Munich, Germany.
      The landscape of “mountains” and “valleys” known as the Cosmic Cliffs is actually a portion of the nebula Gum 31, which contains a young star cluster called NGC 3324. Both Gum 31 and NGC 3324 are part of a vast star-forming region known as the Carina Nebula Complex.
      Ultraviolet light and stellar winds from the stars of NGC 3324 have carved a cavernous area within Gum 31. A portion of this giant bubble is seen above the Cosmic Cliffs. (The star cluster itself is outside this field of view.)
      The Cliffs display a misty appearance, with “steam” that seems to rise from the celestial mountains. In actuality, the wisps are hot, ionized gas and dust streaming away from the nebula under an onslaught of relentless ultraviolet radiation.
      Eagle-eyed viewers may also spot particularly bright, yellow streaks and arcs that represent outflows from young, still-forming stars embedded within the Cosmic Cliffs. The latter part of the visualization sequence swoops past a prominent protostellar jet in the upper right of the image.
      Video: Exploring the Cosmic Cliffs in 3D
      In July 2022, NASA’s James Webb Space Telescope made history, revealing a breathtaking view of a region now nicknamed the Cosmic Cliffs. This glittering landscape, captured in incredible detail, is part of the nebula Gum 31 — a small piece of the vast Carina Nebula Complex — where stars are born amid clouds of gas and dust.
      This visualization brings Webb’s iconic image to life — helping us imagine the true, three-dimensional structure of the universe… and our place within it.
      Produced for NASA by the Space Telescope Science Institute (STScI) with partners at Caltech/IPAC, and developed by the AstroViz Project of NASA’s Universe of Learning, this visualization is part of a longer, narrated video that provides broad audiences, including youth, families, and lifelong learners, with a direct connection to the science and scientists of NASA’s Astrophysics missions. That video enables viewers to explore fundamental questions in science, experience how science is done, and discover the universe for themselves.
      “Bringing this amazing Webb image to life helps the public to comprehend the three-dimensional structure inherent in the 2D image, and to develop a better mental model of the universe,” said STScI’s Frank Summers, principal visualization scientist and leader of the AstroViz Project.
      More visualizations and connections between the science of nebulas and learners can be explored through other products produced by NASA’s Universe of Learning including a Carina Nebula Complex resource page and ViewSpace, a video exhibit that is currently running at almost 200 museums and planetariums across the United States. Visitors can go beyond video to explore the images produced by space telescopes with interactive tools now available for museums and planetariums.
      NASA’s Universe of Learning materials are based upon work supported by NASA under award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and NASA’s Jet Propulsion Laboratory.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      NASA’s Universe of Learning is part of the NASA Science Activation program, from the Science Mission Directorate at NASA Headquarters. The Science Activation program connects NASA science experts, real content and experiences, and community leaders in a way that activates minds and promotes deeper understanding of our world and beyond. Using its direct connection to the science and the experts behind the science, NASA’s Universe of Learning provides resources and experiences that enable youth, families, and lifelong learners to explore fundamental questions in science, experience how science is done, and discover the universe for themselves.
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Explore more: Carina Nebula Complex from NASA’s Universe of Learning
      Read more: Webb’s view of the Cosmic Cliffs
      Listen: Carina Nebula sonification
      Read more: Webb’s star formation discoveries
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated May 07, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars The Universe View the full article
    • By NASA
      Dave Gallagher will become the director of NASA’s Jet Propulsion Laboratory in Southern California on Monday, June 2. Credit: NASA/JPL-Caltech The following is a statement from acting NASA Administrator Janet Petro on the appointment of David Gallagher as director of the agency’s Jet Propulsion Laboratory (JPL) in Southern California. NASA JPL announced Wednesday Laurie Leshin would step down effective Sunday, June 1.
      “Laurie Leshin’s leadership at JPL has been nothing short of extraordinary. She brought a sharp scientific mind, a strong sense purpose, and a clear vision that helped propel the lab forward during a pivotal time. From groundbreaking missions to remarkable technological milestones, Laurie advanced JPL’s legacy of exploration and innovation. We are grateful for her service and wish her the very best as she continues to inspire in the next phase of her career.
      “I’m equally confident in Dave Gallagher’s ability to lead JPL’s next chapter. He brings decades of experience, a steady hand, and a deep understanding of what makes JPL unique. With Dave at the helm, JPL remains well-positioned to continue delivering for NASA and the nation – pushing the boundaries of science and discovery for the benefit of all.”
      For more information about NASA, visit:
      https://www.nasa.gov
      -end-
      Bethany Stevens / Amber Jacobson
      Headquarters, Washington
      202-358-1600
      bethany.c.stevens@nasa.gov / amber.c.jacobson@nasa.gov 
      Share
      Details
      Last Updated May 07, 2025 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
      Jet Propulsion Laboratory View the full article
    • By NASA
      NASA and the Sam Houston Area Council (SHAC) of Scouting America signed a collaborative Space Act Agreement on December 17, 2024, expanding youth access to programs and opportunities with the Johnson Space Center’s Office of STEM Engagement (OSTEM) in Houston.

      The agreement forges the first formal partnership between NASA OSTEM and Scouting America. It will leverage NASA’s educational outreach programs to enrich scout activities and experiences while providing the agency with new opportunities to engage youth around its mission, vision, and goals.

      NASA Acting Associate Administrator Vanessa Wyche (left), at the time serving as director of Johnson Space Center, and Sam Houston Area Council of Scouting America Executive Officer Marvin Smith sign a Space Act Agreement on Dec. 17, 2024. NASA/James Blair “Our ability to explore the unknown and innovate for the benefit of all humanity depends on a highly skilled and competitive STEM workforce,” said NASA Acting Associate Administrator Vanessa Wyche. “Together with SHAC, we can inspire future generations of explorers, scientists, and engineers to help us take the next giant leap toward exciting discoveries.”

      The agreement has already enabled NASA and SHAC to collaborate on a new space-focused summer experience at Camp Strake, the council’s premier camping facility in Southeast Texas. During the weeklong program, scouts will participate in hands-on STEM activities created in partnership with NASA, tour Johnson Space Center, attend robotics and space exploration workshops, and get an in-depth look at NASA’s current projects. SHAC serves approximately 25,000 youth in 16 counties in Southeast Texas.

      Wyche and Johnson leadership presented Smith and members of local scout troops with an American flag that flew aboard NASA’s SpaceX Crew-8 mission. NASA/James Blair “NASA and SHAC share common goals of growing youth interest in science, technology, engineering, and math careers, and providing access to programs and experiences that prepare them to enter the STEM workforce,” said Gamaliel Cherry, director of Johnson’s Office of STEM Engagement. “We are excited to connect more students to NASA’s mission, work, and people through this partnership.”

      NASA OSTEM provides opportunities for the next generation of explorers to discover and hone the science, technology, engineering, and math skills needed for the agency’s bold exploration plans.

      For the latest NASA STEM events, news, and activities for students at any grade level, visit:
      https://stem.nasa.gov

      Explore More
      5 min read NASA Progresses Toward Crewed Moon Mission with Spacecraft, Rocket Milestones
      Article 22 hours ago 5 min read Nilufar Ramji: Shaping Johnson’s Giant Leaps Forward 
      Article 1 day ago 3 min read NASA Langley Participates in Air Power Over Hampton Roads
      Article 2 days ago View the full article
  • Check out these Videos

×
×
  • Create New...