Jump to content

Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander


Recommended Posts

  • Publishers
Posted
Firefly Aerospace's Blue Ghost lander getting encapsulated in SpaceX's rocket fairing ahead of the planned liftoff for 1:11 a.m. EST Jan. 15 from Launch Complex 39A at NASA's Kennedy Space Center in Florida
Firefly Aerospace’s Blue Ghost lander getting encapsulated in SpaceX’s rocket fairing ahead of the planned liftoff for 1:11 a.m. EST Jan. 15 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida
SpaceX

As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the agency is preparing to fly ten instruments aboard Firefly Aerospace’s first delivery to the Moon. These science payloads and technology demonstrations will help advance our understanding of the Moon and planetary processes, while paving the way for future crewed missions on the Moon and beyond, for the benefit of all.

Firefly’s lunar lander, named Blue Ghost, is scheduled to launch on a SpaceX Falcon 9 rocket Wednesday, Jan.15, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After a 45-day cruise phase, Blue Ghost is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a basin approximately 340 miles wide (550 kilometers) located in the northeast quadrant of the Moon’s near side.

How can we enable more precise navigation on the Moon? How do spacecraft interact with the lunar surface? How does Earth’s magnetic field influence the effects of space weather on our home planet? NASA’s instruments on this flight will conduct first-of-their-kind demonstrations to help answer these questions and more, including testing regolith sampling technologies, lunar subsurface drilling capabilities, increasing precision of positioning and navigation abilities, testing radiation tolerant computing, and learning how to mitigate lunar dust during lunar landings.

The ten NASA payloads aboard Firefly’s Blue Ghost lander include:

  • Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will measure heat flow from the Moon’s interior by measuring the thermal gradient, or changes in temperature at various depths, and thermal conductivity, or the subsurface material’s ability to let heat pass through it. LISTER will take several measurements up to 10 feet deep using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Data from LISTER will help scientists retrace the Moon’s thermal history and understand how it formed and cooled. Lead organization: Texas Tech University
  • Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber (sieving) for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. The LPV payload is designed to help increase the science return from planetary missions by testing low-cost technologies for collecting regolith samples in-situ. Lead organization: Honeybee Robotics
  • Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon by reflecting very short laser pulses from Earth-based Lunar Laser Ranging Observatories. The laser pulse transit time to the Moon and back is used to determine the distance. Data from NGLR could improve the accuracy of our lunar coordinate system and contribute to our understanding of the inner structure of the Moon and fundamental physics questions. Lead organization: University of Maryland
  • Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. RAC will measure accumulation rates of lunar regolith on surfaces (for example, solar cells, optical systems, coatings, and sensors) through imaging to determine their ability to repel or shed lunar dust. The data captured will help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace
  • Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but this flight will provide the biggest trial yet by demonstrating the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University
  • Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. EDS is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center
  • Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact Earth. Lead organizations: Boston University, NASA’s Goddard Space Flight Center, and Johns Hopkins University
  • Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute
  • Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from GNSS (Global Navigation Satellite System) constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency
  • Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier spacecraft and hardware are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machines’ first CLPS delivery. Lead organization: NASA’s Langley Research Center 

Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.

Learn more about CLPS and Artemis at: http://www.nasa.gov/clps 

Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov

Natalia Riusech / Nilufar Ramji  
Johnson Space Center, Houston 
281-483-5111 
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Marshall Space Flight Center invites the community to help celebrate the center’s 65th anniversary during a free public event noon to 5 p.m. CDT Saturday, July 19, at The Orion Amphitheater in Huntsville, Alabama.
      NASA Marshall, along with its partners and collaborators, will fill the amphitheater with space exhibits, music, food vendors, and hands-on activities for all ages. The summer celebration will mark 65 years of innovation and exploration, not only for Marshall, but for Huntsville and other North Alabama communities.
      “Our success has been enabled by the continuous support we receive from Huntsville and the North Alabama communities, and this is an opportunity to thank community members and share some of our exciting mission activities,” Joseph Pelfrey, director of NASA Marshall, said.
      Some NASA astronauts from Expedition 72 who recently returned from missions aboard the ISS (International Space Station) will participate in the celebratory event.  The Expedition 72 crew dedicated more than 1,000 combined hours to scientific research and technology demonstrations aboard the space station and crew members in attendance will share their experiences in space.
      The official portrait of the International Space Station’s Expedition 72 crew. At the top (from left) are Roscosmos cosmonaut and Flight Engineer Alexey Ovchinin, NASA astronaut and space station Commander Suni Williams, and NASA astronaut and Flight Engineer Butch Wilmore. In the middle row are Roscosmos cosmonaut and Flight Engineer Ivan Vagner and NASA astronaut and Flight Engineer Don Pettit. In the bottom row are Roscosmos cosmonaut and Flight Engineer Aleksandr Gorbunov and NASA astronaut and Flight Engineer Nick Hague. NASA/Bill Stafford and Robert Markowitz “Every day, our Marshall team works to advance human spaceflight and discovery, such as working with our astronauts on the space station.” Pelfrey said. “We are honored Expedition 72 crew members will join us to help commemorate our 65-year celebration.”
      The anniversary event will also include remarks from Pelfrey, other special presentations, and fun for the whole family.
      Learn more about this free community event at:
      https://www.nasa.gov/marshall65
      Lance D. Davis
      Marshall Space Flight Center, Huntsville, Ala. 
      256-640-9065 
      lance.d.davis@nasa.gov
      Share
      Details
      Last Updated Jun 17, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 2 hours ago 4 min read NASA Celebrates Employees Selected for Top Federal Award
      Article 23 hours ago 3 min read NASA Announces Winners of 2025 Student Launch Competition
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Earth (ESD) Earth Explore Explore Earth Home Air Quality Climate Change Freshwater Life on Earth Severe Storms Snow and Ice The Global Ocean Science at Work Earth Science at Work Technology and Innovation Powering Business Multimedia Image Collections Videos Data For Researchers About Us 1 min read
      From Space to Soil: How NASA Sees Forests
      NASA uses satellite lidar technology to study Earth’s forests, key carbon sinks. The GEDI mission maps forest height and biomass from the International Space Station, while ICESat-2 fills polar data gaps. Together, they enable a first-of-its-kind global biomass map, guiding smarter forest conservation and carbon tracking.

      Original Video and Assets

      Share








      Details
      Last Updated Jun 17, 2025 Editor Earth Science Division Editorial Team Related Terms
      Earth Greenhouse Gases Video Series Explore More
      12 min read NASA’s Hurricane Science, Tech, Data Help American Communities
      With hurricane season underway, NASA is gearing up to produce cutting-edge research to bolster the…


      Article


      5 days ago
      1 min read Leaf Year: Seeing Plants in Hyperspectral Color
      PACE now allows scientists to see three different pigments in vegetation, helping scientists pinpoint even…


      Article


      2 weeks ago
      6 min read What NASA Is Learning from the Biggest Geomagnetic Storm in 20 Years


      Article


      1 month ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.

      View the full article
    • By NASA
      3 Min Read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Better understanding the lunar lighting environment will help NASA prepare astronauts for the harsh environment Artemis III Moonwalkers will experience on their mission. NASA’s Artemis III mission will build on earlier test flights and add new capabilities with the human landing system and advanced spacesuits to send the first astronauts to explore the lunar South Pole and prepare humanity to go to Mars.
      Using high-intensity lighting and low-fidelity mock-ups of a lunar lander, lunar surface, and lunar rocks, NASA engineers are simulating the Moon’s environment at the Flat Floor Facility to study and experience the extreme lighting condition. The facility is located at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      NASA engineers inside the Flat Floor Facility at Marshall Space Flight Center in Huntsville, Alabama, mimic lander inspection and assessment tasks future Artemis astronauts may do during Artemis III. Lights are positioned at a low angle to replicate the strong shadows that are cast across the lunar South Pole. NASA/Charles Beason “The goal is really to understand how shadows will affect lander visual inspection and assessment efforts throughout a future crewed mission,” said Emma Jaynes, test engineer at the facility. “Because the Flat Floor Facility is similar to an inverted air hockey table, NASA and our industry partners can rearrange large, heavy structures with ease – and inspect the shadows’ effects from multiple angles, helping to ensure mission success and astronaut safety for Artemis III.”
      Data and analysis from testing at NASA are improving models Artemis astronauts will use in preparation for lander and surface operations on the Moon during Artemis III. The testing also is helping cross-agency teams evaluate various tools astronauts may use.
      The 86-foot-long by 44-foot-wide facility at NASA is one of the largest, flattest, and most stable air-bearing floors in the world, allowing objects to move across the floor without friction on a cushion of air.
      Test teams use large, 12-kilowatt and 6-kilowatt lights to replicate the low-angle, high contrast conditions of the lunar South Pole. Large swaths of fabric are placed on top of the epoxy floor to imitate the reflective properties of lunar regolith. All the mock-ups are placed on air bearings, allowing engineers to easily move and situate structures on the floor.
      The Flat Floor Facility is an air-bearing floor, providing full-scale simulation capabilities for lunar surface systems by simulating zero gravity in two dimensions. Wearing low-fidelity materials, test engineers can understand how the extreme lighting of the Moon’s South Pole could affect surface operations during Artemis III. NASA/Charles Beason “The Sun is at a permanent low angle at the South Pole of the Moon, meaning astronauts will experience high contrasts between the lit and shadowed regions,” Jaynes said. “The color white can become blinding in direct sunlight, while the shadows behind a rock could stretch for feet and ones behind a lander could extend for miles.”
      The laboratory is large enough for people to walk around and experience this phenomenon with the naked eye, adding insight to what NASA calls ‘human in-the-loop testing.
      NASA is working with SpaceX to develop the company’s Starship Human Landing System to safely send Artemis astronauts to the Moon’s surface and back to lunar orbit for Artemis III.
      Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all. 
      For more information about Artemis missions, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Jun 17, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Human Landing System Program Artemis Artemis 3 General Humans in Space Marshall Space Flight Center Explore More
      4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      Article 2 months ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 2 months ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System
      Article 7 months ago Keep Exploring Discover More Topics From NASA
      Artemis III
      Gateway Lunar Space Station
      Built with international and industry partners, Gateway will be humanity’s first space station around the Moon. It will support a…
      Space Launch System (SLS)
      Humans In Space
      View the full article
    • By NASA
      Acting NASA Administrator Janet Petro and Anke Kaysser-Pyzalla, chair, Executive Board, DLR (German Aerospace Center, or Deutsches Zentrum für Luft- und Raumfahrt), signed an agreement June 16, 2025, to continue a partnership on space medicine research. With this agreement, DLR will provide new radiation sensors aboard the Orion spacecraft during NASA’s Artemis II mission. Scheduled for launch no later than April 2026, Artemis II will mark the first test flight with crew under Artemis.Credit: DLR While attending the Paris Air Show June 16, NASA acting Administrator Janet Petro signed an agreement with DLR (German Aerospace Center, or Deutsches Zentrum für Luft- und Raumfahrt) to continue a partnership in space medicine research. This renewed collaboration builds on previous radiation mitigation efforts for human spaceflight. As NASA advances the Trump-Vance Administration’s goals for exploration on the Moon and Mars, minimizing exposure to space radiation is one of the key areas the agency is working to protect crew on long duration missions.
      With this agreement, DLR will leverage its human spaceflight expertise and provide new radiation sensors aboard the Orion spacecraft during NASA’s Artemis II mission, building on previous work in this area during the Artemis I mission. Scheduled for launch no later than April 2026, Artemis II will mark the first test flight with crew under Artemis.
      “In keeping with the historic agreements NASA has made with international partners as a part of Artemis, I am pleased to sign a new NASA-DLR joint agreement today, to enable radiation research aboard Artemis II,” said acting NASA Administrator Janet Petro. “The German Aerospace Center has been a valuable partner in Artemis, having previously worked with NASA to test technology critical to our understanding of radiation on humans aboard an Orion spacecraft on Artemis I and providing a CubeSat as part of Artemis II. Following a productive meeting between President Trump and German Chancellor Merz earlier this month, I am excited to build upon our great partnership with Germany.”
      During the Artemis II mission’s planned 10-day journey around the Moon and back, four of DLR’s newly developed M-42 extended (M-42 EXT) radiation detectors will be on board, contributing vital data to support astronaut safety. This next-generation device represents a new phase of research as NASA and DLR continue working together to safeguard human health in space.
      Under the leadership of President Trump, America’s Artemis campaign has reignited NASA’s ambition, sparking international cooperation and cutting-edge innovation. The continued partnership with DLR and the deployment of their advanced M-42 EXT radiation detectors aboard Artemis II exemplifies how the Trump-Vance Administration is leading a Golden Era of Exploration and Innovation that puts American astronauts on the path to the Moon, Mars, and beyond.
      “To develop effective protective measures against the impact of space radiation on the human body, comprehensive and coherent radiation measurements in open space are essential,” says Anke Pagels-Kerp, divisional board member for space at DLR. “At the end of 2022, Artemis I carried 12,000 passive and 16 active detectors inside the Helga and Zohar mannequins, which flew aboard the Orion spacecraft as part of DLR’s MARE project. These provided a valuable dataset – the first continuous radiation measurements ever recorded beyond low Earth orbit. We are now excited to take the next step together with NASA and send our upgraded radiation detectors around the Moon on the Artemis II mission.”
      Through the Artemis campaign, the agency will establish a long-term presence on the Moon for scientific exploration with our commercial and international partners, learn how to live and work away from home, and prepare for future human exploration of Mars.
      For more information about Artemis, visit:
      https://www.nasa.gov/artemis
      -end-
      Bethany Stevens / Rachel Kraft
      Headquarters
      202-358-1600
      bethany.c.stevens@nasa.gv / rachel.h.kraft@nasa.gov
      Share
      Details
      Last Updated Jun 17, 2025 LocationNASA Headquarters Related Terms
      Artemis Artemis 2 NASA Headquarters View the full article
    • By NASA
      by Dary Felix Garcia
      NASA is preparing to make history by sending humans to the Moon’s South Pole. There, astronauts will conduct moonwalks for exploration, science experiments, and prepare humanity for the journey to Mars. Missions of this scale require extensive planning, especially when accounting for emergency scenarios such as a crew member becoming incapacitated.  
      To address this critical risk, the South Pole Safety Challenge invited the public to develop a compact, effective device capable of safely rescuing astronauts during emergency situations on the Moon’s surface. Given the harsh and unpredictable conditions of the lunar South Pole, the rescue system must be lightweight, easy to use, and able to transport an incapacitated crew member weighing approximately 755 lbs. (343 kg), representing the crew member and their suit, without the help of the lunar rover. It must also be capable of covering up to 1.24 miles (2 kilometers) across slopes as steep as 20 degrees. 
      “The initiative saved the government an estimated $1,000,000 and more than three  years of work had the solutions been produced using in-house existing resources,” said Ryon Stewart, acting Program Manager of NASA’s Center of Excellence for Collaborative Innovation. “The effort demonstrated how crowdsourcing provides NASA with a wide diversity of innovative ideas and skills.”
      The global challenge received 385 unique ideas from 61 countries. Five standout solutions received a share of the $45,000 prize purse.  Each of the selected solutions demonstrated creativity, practicality, and direct relevance to NASA’s needs for future Moon missions.
      The global challenge received 385 unique ideas from 61 countries. Five standout solutions received a share of the $45,000 prize purse.  Each of the selected solutions demonstrated creativity, practicality, and direct relevance to NASA’s needs for future Moon missions.  
      First Place: VERTEX by Hugo Shelley – A self-deploying four-wheeled motorized stretcher that converts from a compact cylinder into a frame that securely encases an immobilized crew member for transport up to 6.2 miles (10 kilometers).   Second Place: MoonWheel by Chamara Mahesh – A foldable manual trolley designed for challenging terrain and rapid deployment by an individual astronaut.   Third Place: Portable Foldable Compact Emergency Stretcher by Sbarellati team – A foldable stretcher compatible with NASA’s Exploration Extravehicular Activity spacesuit.  Third Place: Advanced Surface Transport for Rescue (ASTRA) by Pierre-Alexandre Aubé – A collapsible three-wheeled device with a 1.2 mile (2 kilometer) range. Third Place: Getting Rick to Roll! by InventorParents – A rapidly deployable, tool-free design suited for functionality in low gravity settings.  NASA is identifying how to integrate some features of the winning ideas into current and future mission designs. Most intriguing are the collapsible concepts of many of the designs that would save crucial mass and volume. Additionally, the submissions offered innovative wheel designs to enhance current concepts. NASA expects to incorporate some features into planning for surface operations of the Moon. 
      HeroX hosted the challenge on behalf of NASA’s Extravehicular Activity and Human Surface Mobility Program. The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate, managed the challenge. The program supports global public competitions and crowdsourcing as tools to advance NASA research and development and other mission needs.   
      Find more opportunities at https://www.nasa.gov/get-involved/ 
      View the full article
  • Check out these Videos

×
×
  • Create New...