Jump to content

New Simulated Universe Previews Panoramas From NASA’s Roman Telescope


Recommended Posts

  • Publishers
Posted

Astronomers have released a set of more than a million simulated images showcasing the cosmos as NASA’s upcoming Nancy Grace Roman Space Telescope will see it. This preview will help scientists explore a myriad of Roman’s science goals.

“We used a supercomputer to create a synthetic universe and simulated billions of years of evolution, tracing every photon’s path all the way from each cosmic object to Roman’s detectors,” said Michael Troxel, an associate professor of physics at Duke University in Durham, North Carolina, who led the simulation campaign. “This is the largest, deepest, most realistic synthetic survey of a mock universe available today.”

This video begins with a tiny one-square-degree portion of the full OpenUniverse simulation area (about 70 square degrees, equivalent to an area of sky covered by more than 300 full moons). It spirals in toward a particularly galaxy-dense region, zooming by a factor of 75. This simulation showcases the cosmos as NASA’s Nancy Grace Roman Space Telescope could see it, allowing scientists to preview the next generation of cosmic discovery now. Roman’s real future surveys will enable a deep dive into the universe with highly resolved imaging, as demonstrated in this video.
NASA’s Goddard Space Flight Center and M. Troxel

The project, called OpenUniverse, relied on the now-retired Theta supercomputer at the DOE’s (Department of Energy’s) Argonne National Laboratory in Illinois. The supercomputer accomplished a process that would take over 6,000 years on a typical computer in just nine days.

In addition to Roman, the 400-terabyte dataset will also preview observations from the Vera C. Rubin Observatory, which is jointly funded by the National Science Foundation and the U.S. Department of Energy, and approximate simulations from ESA’s (the European Space Agency’s) Euclid mission, which has NASA contributions. The Roman data is available now here, and the Rubin and Euclid data will soon follow.

The team used the most sophisticated modeling of the universe’s underlying physics available and fed in information from existing galaxy catalogs and the performance of the telescopes’ instruments. The resulting simulated images span 70 square degrees, equivalent to an area of sky covered by more than 300 full moons. In addition to covering a broad area, it also covers a large span of time — more than 12 billion years.

Roman OpenUniverse Popout Graphic
Each tiny dot in the image at left is a galaxy simulated by the OpenUniverse campaign. The one-square-degree image offers a small window into the full simulation area, which is about 70 square degrees (equivalent to an area of sky covered by more than 300 full moons), while the inset at right is a close-up of an area 75 times smaller (1/600th the size of the full area). This simulation showcases the cosmos as NASA’s Nancy Grace Roman Space Telescope could see it. Roman will expand on the largest space-based galaxy survey like it – the Hubble Space Telescope’s COSMOS survey – which imaged two square degrees of sky over the course of 42 days. In only 250 days, Roman will view more than a thousand times more of the sky with the same resolution.

The project’s immense space-time coverage shows scientists how the telescopes will help them explore some of the biggest cosmic mysteries. They will be able to study how dark energy (the mysterious force thought to be accelerating the universe’s expansion) and dark matter (invisible matter, seen only through its gravitational influence on regular matter) shape the cosmos and affect its fate. Scientists will get closer to understanding dark matter by studying its gravitational effects on visible matter. And by studying the simulation’s 100 million synthetic galaxies, they will see how galaxies and galaxy clusters evolved over eons.

Repeated mock observations of a particular slice of the universe enabled the team to stitch together movies that unveil exploding stars crackling across the synthetic cosmos like fireworks. These starbursts allow scientists to map the expansion of the simulated universe.

Supernova Simulation
This simulation showcases the dynamic universe as NASA’s Nancy Grace Roman Space Telescope could see it over the course of its five-year primary mission. The video sparkles with synthetic supernovae from observations of the OpenUniverse simulated universe taken every five days (similar to the expected cadence of Roman’s High-Latitude Time-Domain Survey, which OpenUniverse simulates in its entirety). On top of the static sky of stars in the Milky Way and other galaxies, more than a million exploding stars flare into visibility and then slowly fade away. To highlight the dynamic physics happening and for visibility at this scale, the true brightness of each transient event has been magnified by a factor of 10,000 and no background light has been added to the simulated images. The video begins with Roman’s full field of view, which represents a single pointing of Roman’s camera, and then zooms into one square.
NASA’s Goddard Space Flight Center and M. Troxel

Scientists are now using OpenUniverse data as a testbed for creating an alert system to notify astronomers when Roman sees such phenomena. The system will flag these events and track the light they generate so astronomers can study them.

That’s critical because Roman will send back far too much data for scientists to comb through themselves. Teams are developing machine-learning algorithms to determine how best to filter through all the data to find and differentiate cosmic phenomena, like various types of exploding stars.

“Most of the difficulty is in figuring out whether what you saw was a special type of supernova that we can use to map how the universe is expanding, or something that is almost identical but useless for that goal,” said Alina Kiessling, a research scientist at NASA’s Jet Propulsion Laboratory (JPL) in Southern California and the principal investigator of OpenUniverse.

While Euclid is already actively scanning the cosmos, Rubin is set to begin operations late this year and Roman will launch by May 2027. Scientists can use the synthetic images to plan the upcoming telescopes’ observations and prepare to handle their data. This prep time is crucial because of the flood of data these telescopes will provide.

In terms of data volume, “Roman is going to blow away everything that’s been done from space in infrared and optical wavelengths before,” Troxel said. “For one of Roman’s surveys, it will take less than a year to do observations that would take the Hubble or James Webb space telescopes around a thousand years. The sheer number of objects Roman will sharply image will be transformative.”

Gravitational lensing animation
This synthetic OpenUniverse animation shows the type of science that astronomers will be able to do with future Roman deep-field observations. The gravity of intervening galaxy clusters and dark matter can lens the light from farther objects, warping their appearance as shown in the animation. By studying the distorted light, astronomers can study elusive dark matter, which can only be measured indirectly through its gravitational effects on visible matter. As a bonus, this lensing also makes it easier to see the most distant galaxies whose light the dark matter magnifies.
Caltech-IPAC/R. Hurt

“We can expect an incredible array of exciting, potentially Nobel Prize-winning science to stem from Roman’s observations,” Kiessling said. “The mission will do things like unveil how the universe expanded over time, make 3D maps of galaxies and galaxy clusters, reveal new details about star formation and evolution — all things we simulated. So now we get to practice on the synthetic data so we can get right to the science when real observations begin.”

Astronomers will continue using the simulations after Roman launches for a cosmic game of spot the differences. Comparing real observations with synthetic ones will help scientists see how accurately their simulation predicts reality. Any discrepancies could hint at different physics at play in the universe than expected.

“If we see something that doesn’t quite agree with the standard model of cosmology, it will be extremely important to confirm that we’re really seeing new physics and not just misunderstanding something in the data,” said Katrin Heitmann, a cosmologist and deputy director of Argonne’s High Energy Physics division who managed the project’s supercomputer time. “Simulations are super useful for figuring that out.”

OpenUniverse, along with other simulation tools being developed by Roman’s Science Operations and Science Support centers, will prepare astronomers for the large datasets expected from Roman. The project brings together dozens of experts from NASA’s JPL, DOE’s Argonne, IPAC, and several U.S. universities to coordinate with the Roman Project Infrastructure Teams, SLAC, and the Rubin LSST DESC (Legacy Survey of Space and Time Dark Energy Science Collaboration). The Theta supercomputer was operated by the Argonne Leadership Computing Facility, a DOE Office of Science user facility.

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.

Download high-resolution video and images from NASA’s Scientific Visualization Studio

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE NOW: Sun Close up Views/ 16th JUNE Backyard Astronomy with Lunt Telescope
    • By Amazing Space
      LIVE NOW: Sun Close up Views/ 16th JUNE Backyard Astronomy with Lunt Telescope
    • By NASA
      Heading into a recent staff meeting for Johnson Space Center’s Business Development & Technology Integration Office, Jason Foster anticipated a typical agenda of team updates and discussion. He did not expect an announcement that he had been named a 2025 Rookie of the Year – Honorable Mention through the Federal Laboratory Consortium’s annual awards program.

      Foster was one of only three technology transfer professionals across the federal government to be recognized in the Rookie of the Year category, which is open to early-career individuals with less than three years of experience. “It was definitely a surprise,” he said. “It was quite an honor, because it’s not only representing Johnson Space Center but also NASA.”

      Jason Foster recognized at the Federal Laboratory Consortium Award Ceremony as a Rookie of the Year – Honorable Mention.Image courtesy of Jason Foster Foster is a licensing specialist and New Technology Report (NTR) specialist within Johnson’s Technology Transfer Office in Houston. That team works to ensure that innovations developed for aeronautics and space exploration are made broadly available to the public, maximizing their benefit to the nation. Foster’s role involves both capturing new technologies developed at Johnson and marketing and licensing those technologies to companies that would like to use and further develop them.

      He describes much of his work as “technology hunting” – reaching out to branches, offices, and teams across Johnson to teach them about the Technology Transfer Office, NTRs, and the value of technology reporting for NASA and the public. “NTRs are the foundation that allows our office to do our job,” he said. “We need to know about a technology in order to transfer it.”

      Jason Foster (left) visited NASA’s White Sands Test Facility in Las Cruces, New Mexico, with his colleague Edgar Castillo as part of the Technology Transfer Office’s work to capture new technology and innovations developed at Johnson and affiliated facilities. Image courtesy of Jason Foster Foster’s efforts to streamline and strengthen the reporting and patenting of Johnson’s innovations led to his recognition by the consortium. His proactive outreach and relationship-building improved customer service and contributed to 158 NTRs in fiscal year 2024 – the highest number of NTRs disclosed by federal employees at any NASA center. Foster also proposed a three-month NTR sprint, during which he led a team of seven in an intensive exercise to identify and report new technologies. This initiative not only cleared a backlog of leads for the office, but also resulted in more than 120 previously undisclosed NTRs. “We are still using that process now as we continue processing NTRs,” Foster said. On top of those achievements, he helped secure the highest recorded number of license agreements with commercial entities in the center’s history, with 41 licenses executed in fiscal year 2024.

      “I am very proud of my accomplishments, none of it would be possible without the open-mindedness and continuous support of my incredible team,” Foster said. “They have always provided a space to grow, and actively welcome innovation in our processes and workflows.”

      Jason Foster educated Johnson employees about the Technology Transfer Office and the importance of submitting New Technology Reports during the center’s annual Innovation Showcase.Image courtesy of Jason Foster A self-described “space nerd,” Foster said he always envisioned working at NASA, but not until much later in his career – ideally as an astronaut. He initially planned to pursue an astrophysics degree but discovered a passion for engineering and fused that with his love of space by studying aerospace, aeronautical, and astronautical engineering instead. In his last semester of college at California Polytechnic State University of San Luis Obispo, he landed a Universities Space Research Association internship at Johnson, supporting flight software development for crew exercise systems on the International Space Station and future exploration missions. “I got really involved in the Johnson Space Center team and the work, and I thought, what if I joined NASA now?”

      He was hired as a licensing specialist on the Technology Transfer team under the JETS II Contract as an Amentum employee shortly after graduating and continually seeks new opportunities to expand his role and skillsets. “The more I can learn about anything NASA’s doing is incredible,” he said. “I found myself in this perfect position where literally my job is to learn everything there is to learn.”

      Jason Foster holding up Aerogel during his visit to the Hypervelocity Impact Testing Laboratory at NASA’s White Sands Test Facility in Las Cruces, New Mexico. The visit was part of the Technology Transfer Office’s work to capture new technology and innovations developed at Johnson and affiliated facilities. Image courtesy of Jason Foster Foster celebrates three years with NASA this July. In his time at the agency, he has learned the value of getting to know and understand your colleagues’ needs in order to help them. Before he meets with someone, he takes time to learn about the organization or team they are a part of, the work they are involved in, and what they might discuss. It is also important to determine how each person prefers to communicate and collaborate. “Doing your homework pays dividends,” Foster said. He has found that being as prepared as possible opens doors to more opportunities, and it helps to save valuable time for busy team members.

      Jason Foster practices fire spinning on a California beach. Image courtesy of Jason Foster When he is not technology hunting, you might find Foster practicing the art of fire spinning. He picked up the hobby in college, joining a club that met at local beaches to practice spinning and capturing different geometric patterns through long exposure photos. “It was kind of a strange thing to get into, but it was really fun,” he said. His love of learning drives his interest in other activities as well. Gardening is a relatively new hobby inspired by a realization that he had never grown anything before.   

      “It’s a genuine joy, I think, coming across something with curiosity and wanting to learn from it,” he said. “I think it especially helps in my job, where your curiosity switch has to be on at least 90% of the time.”

      Explore More
      4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts 
      Article 6 days ago 4 min read Johnson’s Paige Whittington Builds a Symphony of Simulations
      Article 3 weeks ago 9 min read Station Nation: Meet Megan Harvey, Utilization Flight Lead and Capsule Communicator 
      Article 4 weeks ago View the full article
    • By NASA
      A funky effect Einstein predicted, known as gravitational lensing — when a foreground galaxy magnifies more distant galaxies behind it — will soon become common when NASA’s Nancy Grace Roman Space Telescope begins science operations in 2027 and produces vast surveys of the cosmos.
      This image shows a simulated observation from NASA’s Nancy Grace Roman Space Telescope with an overlay of its Wide Field Instrument’s field of view. More than 20 gravitational lenses, with examples shown at left and right, are expected to pop out in every one of Roman’s vast observations. A journal paper led by Bryce Wedig, a graduate student at Washington University in St. Louis, Missouri, estimates that of those Roman detects, about 500 from the telescope’s High-Latitude Wide-Area Survey will be suitable for dark matter studies. By examining such a large population of gravitational lenses, the researchers hope to learn a lot more about the mysterious nature of dark matter.Credit: NASA, Bryce Wedig (Washington University), Tansu Daylan (Washington University), Joseph DePasquale (STScI) A particular subset of gravitational lenses, known as strong lenses, is the focus of a new paper published in the Astrophysical Journal led by Bryce Wedig, a graduate student at Washington University in St. Louis. The research team has calculated that over 160,000 gravitational lenses, including hundreds suitable for this study, are expected to pop up in Roman’s vast images. Each Roman image will be 200 times larger than infrared snapshots from NASA’s Hubble Space Telescope, and its upcoming “wealth” of lenses will vastly outpace the hundreds studied by Hubble to date.
      Roman will conduct three core surveys, providing expansive views of the universe. This science team’s work is based on a previous version of Roman’s now fully defined High-Latitude Wide-Area Survey. The researchers are working on a follow-up paper that will align with the final survey’s specifications to fully support the research community.
      “The current sample size of these objects from other telescopes is fairly small because we’re relying on two galaxies to be lined up nearly perfectly along our line of sight,” Wedig said. “Other telescopes are either limited to a smaller field of view or less precise observations, making gravitational lenses harder to detect.”
      Gravitational lenses are made up of at least two cosmic objects. In some cases, a single foreground galaxy has enough mass to act like a lens, magnifying a galaxy that is almost perfectly behind it. Light from the background galaxy curves around the foreground galaxy along more than one path, appearing in observations as warped arcs and crescents. Of the 160,000 lensed galaxies Roman may identify, the team expects to narrow that down to about 500 that are suitable for studying the structure of dark matter at scales smaller than those galaxies.
      “Roman will not only significantly increase our sample size — its sharp, high-resolution images will also allow us to discover gravitational lenses that appear smaller on the sky,” said Tansu Daylan, the principal investigator of the science team conducting this research program. Daylan is an assistant professor and a faculty fellow at the McDonnell Center for the Space Sciences at Washington University in St. Louis. “Ultimately, both the alignment and the brightness of the background galaxies need to meet a certain threshold so we can characterize the dark matter within the foreground galaxies.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video shows how a background galaxy’s light is lensed or magnified by a massive foreground galaxy, seen at center, before reaching NASA’s Roman Space Telescope. Light from the background galaxy is distorted, curving around the foreground galaxy and appearing more than once as warped arcs and crescents. Researchers studying these objects, known as gravitational lenses, can better characterize the mass of the foreground galaxy, which offers clues about the particle nature of dark matter.Credit: NASA, Joseph Olmsted (STScI) What Is Dark Matter?
      Not all mass in galaxies is made up of objects we can see, like star clusters. A significant fraction of a galaxy’s mass is made up of dark matter, so called because it doesn’t emit, reflect, or absorb light. Dark matter does, however, possess mass, and like anything else with mass, it can cause gravitational lensing.
      When the gravity of a foreground galaxy bends the path of a background galaxy’s light, its light is routed onto multiple paths. “This effect produces multiple images of the background galaxy that are magnified and distorted differently,” Daylan said. These “duplicates” are a huge advantage for researchers — they allow multiple measurements of the lensing galaxy’s mass distribution, ensuring that the resulting measurement is far more precise.
      Roman’s 300-megapixel camera, known as its Wide Field Instrument, will allow researchers to accurately determine the bending of the background galaxies’ light by as little as 50 milliarcseconds, which is like measuring the diameter of a human hair from the distance of more than two and a half American football fields or soccer pitches.
      The amount of gravitational lensing that the background light experiences depends on the intervening mass. Less massive clumps of dark matter cause smaller distortions. As a result, if researchers are able to measure tinier amounts of bending, they can detect and characterize smaller, less massive dark matter structures — the types of structures that gradually merged over time to build up the galaxies we see today.
      With Roman, the team will accumulate overwhelming statistics about the size and structures of early galaxies. “Finding gravitational lenses and being able to detect clumps of dark matter in them is a game of tiny odds. With Roman, we can cast a wide net and expect to get lucky often,” Wedig said. “We won’t see dark matter in the images — it’s invisible — but we can measure its effects.”
      “Ultimately, the question we’re trying to address is: What particle or particles constitute dark matter?” Daylan added. “While some properties of dark matter are known, we essentially have no idea what makes up dark matter. Roman will help us to distinguish how dark matter is distributed on small scales and, hence, its particle nature.”
      Preparations Continue
      Before Roman launches, the team will also search for more candidates in observations from ESA’s (the European Space Agency’s) Euclid mission and the upcoming ground-based Vera C. Rubin Observatory in Chile, which will begin its full-scale operations in a few weeks. Once Roman’s infrared images are in hand, the researchers will combine them with complementary visible light images from Euclid, Rubin, and Hubble to maximize what’s known about these galaxies.
      “We will push the limits of what we can observe, and use every gravitational lens we detect with Roman to pin down the particle nature of dark matter,” Daylan said.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc. in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Claire Blome
      Space Telescope Science Institute, Baltimore, Md.
      Share
      Details
      Last Updated Jun 12, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Astrophysics Dark Matter Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research The Universe Explore More
      6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 2 months ago 5 min read Millions of Galaxies Emerge in New Simulated Images From NASA’s Roman
      Article 2 years ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
      Article 3 months ago View the full article
    • By NASA
      What does it take to gaze through time to our universe’s very first stars and galaxies?  
      NASA answers this question in its new documentary, “Cosmic Dawn: The Untold Story of the James Webb Space Telescope.” The agency’s original documentary, which chronicles the story of the most powerful telescope ever deployed in space, was released Wednesday, June 11.
      Cosmic Dawn offers an unprecedented glimpse into the delicate assembly, rigorous testing, and triumphant launch of NASA’s James Webb Space Telescope. The documentary showcases the complexity involved in creating a telescope capable of peering billions of years into the past.  
      Cosmic Dawn is now available for streaming on NASA’s YouTube, NASA+, and select local theaters. The trailer is available on NASA+ and YouTube.
      Relive the pitfalls and the triumphs of the world’s most powerful space telescope—from developing the idea of an impossible machine to watching with bated breath as it unfolded, hurtling through space a million miles away from Earth. Watch the Documentary on YouTube The film features never-before-seen footage captured by the Webb film crew, offering intimate access to the challenges and triumphs faced by the team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland — the birthplace of Webb.
      “At NASA, we’re thrilled to share the untold story of our James Webb Space Telescope in our new film ‘Cosmic Dawn,’ celebrating not just the discoveries, but the extraordinary people who made it all happen, for the benefit of humanity,” said Rebecca Sirmons, head of NASA+ at the agency’s headquarters in Washington.
      From its vantage point more than a million miles from Earth and a massive sunshield to block the light of our star, Webb’s First Deep Field  the deepest and sharpest infrared images of the universe that the world had seen.
      Webb’s images have dazzled people around the globe, capturing the very faint light of the first stars and galaxies that formed more than 13.5 billion years ago. These are baby pictures from an ancient past when the first objects were turning on and emitting light after the Big Bang. Webb has also given us new insights into black holes, planets both inside and outside of our own solar system, and many other cosmic phenomena.
      Webb was a mission that was going to be spectacular whether that was good or bad — if it failed or was successful. It was always going to make history
      Sophia roberts
      NASA Video Producer
      NASA’s biggest and most powerful space telescope was also its most technically complicated to build. It was harder still to deploy, with more than 300 critical components that had to deploy perfectly. The risks were high in this complicated dance of engineering, but the rewards were so much higher.
      “Webb was a mission that was going to be spectacular whether that was good or bad — if it failed or was successful,” said video producer Sophia Roberts, who chronicled the five years preceding Webb’s launch. “It was always going to make history.”
      NASA scientists like Nobel Laureate Dr. John Mather conceived Webb to look farther and deeper into origins of our universe using cutting edge infrared technology and massive mirrors to collect incredibly rich information about our universe, from the light of the first galaxies to detailed images of planets in our own solar system.
      To achieve this goal, NASA and its partners faced unprecedented hurdles.
      Webb’s development introduced questions that no one had asked before. How do you fit a telescope with the footprint of a tennis court into a rocket? How do you clean 18 sensitive mirrors when a single scratch could render them inoperable? How do you maintain critical testing while hurricane stormwater pours through ceilings?
      A technician inspects the James Webb Space Telescope primary mirrors at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.NASA/Sophia Roberts Cosmic Dawn captures 25 years of formidable design constraints, high-stake assessments, devastating natural disasters, a global pandemic and determined individuals who would let none of that get in the way of getting this monumental observatory to its rightful place in the cosmos.
      “There was nothing easy about Webb at all,” said Webb project manager Bill Ochs. “I don’t care what aspect of the mission you looked at.”
      Viewers will experience a one-of-a-kind journey as NASA and its partners tackle these dilemmas — and more — through ingenuity, teamwork, and unbreakable determination.
      “The inspiration of trying to discover something — to build something that’s never been built before, to discover something that’s never been known before — it keeps us going,” Mather said. “We are pleased and privileged in our position here at NASA to be able to carry out this [purpose] on behalf of the country and the world.”
      Bound by NASA’s 66-year commitment to document and share its work with the public, Cosmic Dawn details every step toward Webb’s launch and science results.
      Learn more at nasa.gov/cosmicdawn By Laine Havens,
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Katie Konans,
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jun 11, 2025 Related Terms
      James Webb Space Telescope (JWST) Goddard Space Flight Center NASA+ View the full article
  • Check out these Videos

×
×
  • Create New...