Jump to content

Jupiter Mapping Traces Changes in Comet P/Shoemaker-Levy 9 Impact Sites


Recommended Posts

Posted
low_STSCI-H-p-9447a-k1340x520.png

This series of color-composite maps of Jupiter, assembled from images taken with NASA's Hubble Space Telescope, allows astronomers to trace changes in the dark impact sites that resulted from the July 1994 impact of comet P/Shoemaker-Levy 9 with the giant planet. Through computer image processing, researchers "peel" the atmosphere of Jupiter off its globe and spread it flat into a map. These cylindrical projections show the entire atmosphere of Jupiter in one map. The HST's images show clearly that dark material produced in the comet explosion has continued to spread in Jupiter's atmosphere. However, the "band" of dark material is still clumpy, which suggests that the major impact sites are still localized and, so, can still be identified.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On June 11, NASA’s LRO (Lunar Reconnaissance Orbiter) captured photos of the site where the ispace Mission 2 SMBC x HAKUTO-R Venture Moon (RESILIENCE) lunar lander experienced a hard landing on June 5, 2025, UTC.
      RESILIENCE lunar lander impact site, as seen by NASA’s Lunar Reconnaissance Orbiter Camera (LROC) on June 11, 2025. The lander created a dark smudge surrounded by a subtle bright halo.Credit: NASA/Goddard/Arizona State University. RESILIENCE was launched on Jan. 15 on a privately funded spacecraft.
      LRO’s right Narrow Angle Camera (one in a suite of cameras known as LROC) captured the images featured here from about 50 miles above the surface of Mare Frigoris, a volcanic region interspersed with large-scale faults known as wrinkle ridges.
      The dark smudge visible above the arrow in the photo formed as the vehicle impacted the surface, kicking up regolith — the rock and dust that make up Moon “soil.” The faint bright halo encircling the site resulted from low-angle regolith particles scouring the delicate surface.
      This animation shows the RESILIENCE site before and after the impact. In the image, north is up. Looking from west to east, or left to right, the area pictured covers 2 miles.Credit: NASA/Goddard/Arizona State University.  LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
      More on this story from Arizona State University’s LRO Camera website
      Media Contact
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

      Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      lonnie.shekhtman@nasa.gov
      Share
      Details
      Last Updated Jun 20, 2025 EditorMadison OlsonContactMolly Wassermolly.l.wasser@nasa.govLocationGoddard Space Flight Center Related Terms
      Lunar Reconnaissance Orbiter (LRO) Earth's Moon View the full article
    • By European Space Agency
      ESA Impact: Pick of our spring space snaps

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Jet Propulsion Laboratory perfected aerogel for the Stardust mission. Under Stardust, bricks of aerogel covered panels on a spacecraft that flew behind a comet, with the microporous material “soft catching” any particles that might strike it and preserving them for return to Earth.NASA Consisting of 99% air, aerogel is the world’s lightest solid. This unique material has found purpose in several forms — from NASA missions to high fashion.

      Driven by the desire to create a 3D cloud, Greek artist, Ioannis Michaloudis, learned to use aerogel as an artistic medium. His journey spanning more than 25 years took him to the Massachusetts Institute of Technology (MIT) in Cambridge; Shivaji University in Maharashtra, India, and NASA’s Jet Propulsion Laboratory in Southern California.
       
      A researcher at MIT introduced Michaloudis to aerogel after hearing of his cloud-making ambition, and he was immediately intrigued. Aerogel is made by combining a polymer with a solvent to create a gel and flash-drying it under pressure, leaving a solid filled with microscopic pores. 

      Scientists at JPL chose aerogel in the mid-1990s to enable the Stardust mission, with the idea that a porous surface could capture particles while flying on a probe behind a comet. Aerogel worked in lab tests, but it was difficult to manufacture consistently and needed to be made space-worthy. NASA JPL hired materials scientist Steve Jones to develop a flight-ready  aerogel, and he eventually got funding for an aerogel lab. 

      The aerogel AirSwipe bag Michaloudis created for Coperni’s 2024 fall collection debut appears almost luminous in its model’s hand. The bag immediately captured the world’s attention.Coperni
      The Stardust mission succeeded, and when Michaloudis heard of it, he reached out to JPL, where Jones invited him to the lab. Now retired, Jones recalled, “I went through the primer on aerogel with him, the different kinds you could make and their different properties.” The size of Jones’ reactor, enabling it to make large objects, impressed Michaloudis. With tips on how to safely operate a large reactor, he outfitted his own lab with one. 

      In India, Michaloudis learned recipes for aerogels that can be molded into large objects and don’t crack or shrink during drying. His continued work with aerogels has created an extensive art portfolio. 

      Michaloudis has had more than a dozen solo exhibitions. All his artwork involves aerogel, drawing attention with its unusual qualities. An ethereal, translucent blue, it casts an orange shadow and can withstand molten metals. 
      In 2020, Michaloudis created a quartz-encapsulated aerogel pendant for the centerpiece of that year’s collection from French jewelry house Boucheron. Michaloudis also captured the fashion and design world’s attention with a handbag made of aerogel, unveiled at Coperni’s 2024 fall collection debut. 

      NASA was a crucial step along the way. “I am what I am, and we made what we made thanks to the Stardust project,” said Michaloudis. 

      Read More Share
      Details
      Last Updated Jun 09, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read NASA Tech Gives Treadmill Users a ‘Boost’  
      Creators of the original antigravity treadmill continue to advance technology with new company.
      Article 2 weeks ago 3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition
      Article 3 weeks ago 3 min read Meet Four NASA Inventors Improving Life on Earth and Beyond
      Article 1 month ago Keep Exploring Discover Related Topics
      Missions
      Technology Transfer & Spinoffs
      Stardust
      NASA’s Stardust was the first spacecraft to bring samples from a comet to Earth, and the first NASA mission to…
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the Mapping Sub-cm Orbital Debris in LEO concept.NASA/Christine Hartzell Christine Hartzell
      University of Maryland, College Park
      The proposed investigation will address key technological challenges associated with a previously funded NIAC Phase I award titled “On-Orbit, Collision-Free Mapping of Small Orbital Debris”. Sub-cm orbital debris in LEO is not detectable or trackable using conventional technologies and poses a major hazard to crewed and un-crewed spacecraft. Orbital debris is a concern to NASA, as well as commercial and DoD satellite providers. In recent years, beginning with our NIAC Phase I award, we have been developing the idea that the sub-cm orbital debris environment may be monitored by detecting the plasma signature of the debris, rather than optical or radar observations of the debris itself. Our prior work has shown that sub-cm orbital debris may produce plasma solitons, which are a type of wave in the ionosphere plasma that do not disperse as readily as traditional waves. Debris may produce solitons that are co-located with the debris (called pinned solitons) or that travel ahead of the debris (called precursor solitons). We have developed computational models to predict the characteristics of the plasma solitons generated by a given piece of debris. These solitons may be detectable by 12U smallsats outfitted with multi-needle Langmuir probes.
      In this Phase II NIAC award, we will address two key technical challenges that significantly effect the value of soliton-based debris detection: 1. Develop an algorithm to constrain debris size and speed based on observed soliton characteristics. Our prior investigations have produced predictions of soliton characteristics as a function of debris characteristics. However, the inverse problem is not analytically solvable. We will develop machine learning algorithms to address this challenge. 2. Evaluate the feasibility and value of detecting soliton velocity. Multiple observations of the same soliton may allow us to constrain the distance that the soliton has traveled from the debris. When combined with the other characteristics of the soliton and knowledge of the local plasma environment, back propagation of the soliton in plasma simulations may allow us to extract the position and velocity vectors of the debris. If it is possible to determine debris size, position and velocity from soliton observations, this would provide a breakthrough in space situational awareness for debris that is currently undetectable using conventional technology. However, even if only debris size and speed can be inferred from soliton detections, this technology is still a revolutionary improvement on existing methods of characterizing the debris flux, which provide data only on a multi-year cadence. This proposed investigation will answer key technological questions about how much information can be extracted from observed soliton signals and trade mission architectures for complexity and returned data value. Additionally, we will develop a roadmap to continue to advance this technology.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated May 27, 2025 EditorLoura Hall Related Terms
      NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Gravity Poppers: Hopping Probes for the Interior Mapping of Small Solar System Bodies concept.NASA/Benjamin Hockman Benjamin Hockman
      NASA Jet Propulsion Laboratory
      The goal of this effort is to develop a robust and affordable mission architecture that enables the gravimetric density reconstruction of small body interiors to unprecedented precision. Our architecture relies on the novel concept of “Gravity Poppers,” which are small, minimalistic probes that are deployed to the surface of a small body and periodically “pop” so as to perpetuate a random hopping motion around the body. By tracking a large swarm of poppers from orbit, a mother spacecraft can precisely estimate their trajectories and continuously refine a high-resolution map of the body’s gravity field, and thus, its internal mass distribution. Hopping probes are also equipped with minimalistic in-situ sensors to measure the surface temperature (when landed) and strength (when bouncing) in order to complement the gravity field and build a more accurate picture of the interior. The Phase I study focused on feasibility assessment of three core technologies that enable such a mission: (1) the mechanical design of hopping probes to be small, simple, robust, and “visible” to a distant spacecraft, (2) the tracking strategy for detecting and estimating the trajectories of a large number of ballistic probes, and (3) the algorithmic framework by which such measurements can be used to iteratively refine a gravity model of the body. The key finding was that the concept is feasible, and demonstrated to have the potential to resolve extremely accurate gravity models, allowing scientists to localize density anomalies such as “weighing” large boulders on the surface. This Phase II Proposal aims to further develop these three core technologies through continued mission trade studies and sensitivity analysis, case studies for simulated missions, and hardware prototypes demonstrating both hopping behavior and tracking performance.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated May 27, 2025 EditorLoura Hall Related Terms
      NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
  • Check out these Videos

×
×
  • Create New...