Jump to content

Recommended Posts

  • Publishers
Posted

On Jan. 7, 1610, Italian astronomer Galileo Galilei peered through his newly improved 20-power homemade telescope at the planet Jupiter. He noticed three other points of light near the planet, at first believing them to be distant stars. Observing them over several nights, he noted that they appeared to move in the wrong direction with regard to the background stars and they remained in Jupiter’s proximity but changed their positions relative to one another. Four days later, he observed a fourth point of light near the planet with the same unusual behavior. By Jan. 15, Galileo correctly concluded that he had discovered four moons orbiting around Jupiter, providing strong evidence for the Copernican theory that most celestial objects did not revolve around the Earth.  

In March 1610, Galileo published his discoveries of Jupiter’s satellites and other celestial observations in a book titled Siderius Nuncius (The Starry Messenger). As their discoverer, Galileo had naming rights to Jupiter’s satellites. He proposed to name them after his patrons the Medicis and astronomers called them the Medicean Stars through much of the seventeenth century, although in his own notes Galileo referred to them by the Roman numerals I, II, III, and IV, in order of their distance from Jupiter. Astronomers still refer to the four moons as the Galilean satellites in honor of their discoverer.  

In 1614, the German astronomer Johannes Kepler suggested naming the satellites after mythological figures associated with Jupiter, namely Io, Europa, Ganymede, and Callisto, but his idea didn’t catch on for more than 200 years. Scientists didn’t discover any more satellites around Jupiter until 1892 when American astronomer E.E. Barnard found Jupiter’s fifth moon Amalthea, much smaller than the Galilean moons and orbiting closer to the planet than Io. It was the last satellite in the solar system found by visual observation – all subsequent discoveries occurred via photography or digital imaging. As of today, astronomers have identified 95 moons orbiting Jupiter. 

Although each of the Galilean satellites has unique features, such as the volcanoes of Io, the heavily cratered surface of Callisto, and the magnetic field of Ganymede, scientists have focused more attention on Europa due to the tantalizing possibility that it might be hospitable to life. In the 1970s, NASA’s Pioneer 10 and 11 and Voyager 1 and 2 spacecraft took ever increasingly detailed images of the large satellites including Europa during their flybys of Jupiter. The photographs revealed Europa to have the smoothest surface of any object in the solar system, indicating a relatively young crust, and also one of the brightest of any satellite indicating a highly reflective surface. These features led scientists to hypothesize that Europa is covered by an icy crust floating on a subsurface salty ocean. They further postulated that tidal heating caused by Jupiter’s gravity reforms the surface ice layer in cycles of melting and freezing.   

More detailed observations from NASA’s Galileo spacecraft that orbited Jupiter between 1995 and 2003 and completed 11 close encounters with Europa revealed that long linear features on its surface may indicate tidal or tectonic activity. Reddish-brown material along the fissures and in splotches elsewhere on the surface may contain salts and sulfur compounds transported from below the crust and modified by radiation. Observations from the Hubble Space Telescope and re-analysis of images from Galileo revealed possible plumes emanating from beneath Europa’s crust, lending credence to that hypothesis. While the exact composition of this material is not known, it likely holds clues to whether Europa may be hospitable to life.   

Future robotic explorers of Europa may answer some of the outstanding questions about this unique satellite of Jupiter. NASA’s Europa Clipper set off in October 2024 on a 5.5-year journey to Jupiter. After its arrival in 2030, the spacecraft will enter orbit around the giant planet and conduct 49 flybys of Europa during its four-year mission. Managed by the Jet Propulsion Laboratory in Pasadena, California, and the Applied Physics Laboratory at Johns Hopkins University in Baltimore, Maryland, Europa Clipper will carry nine instruments including imaging systems and a radar to better understand the structure of the icy crust. Data from Europa Clipper will complement information returned by the European Space Agency’s JUICE (Jupiter Icy Moon Explorer) spacecraft. Launched in April 2023, JUICE will first enter orbit around Jupiter in 2031 and then enter orbit around Ganymede in 2034. The spacecraft also plans to conduct studies of Europa complementary with Europa Clipper’s. The two spacecraft should greatly increase our understanding of Europa and perhaps uncover new mysteries. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A white-tailed deer fawn photographed on a Snapshot Wisconsin trail camera in Vernon County, WI Credit: WI DNR The Snapshot Wisconsin project recently collected their 100 millionth trail camera photo! What’s more, this milestone coincides with the project’s 10-year anniversary. Congratulations to the team and everyone who’s participated!
      Snapshot Wisconsin utilizes a statewide network of volunteer-managed trail cameras to monitor and better understand the state’s diverse wildlife from white-tailed deer to snowshoe hares, whooping cranes, and much more.
      “It’s been amazing to get a glimpse of our wild treasures via the Snapshot lens,” said one volunteer. “Satisfying to help advance wildlife research in the digital age.”
      Snapshot Wisconsin was launched in 2013 with help from a NASA grant, and is overseen by the Wisconsin Department of Natural Resources. It recently won a new grant from NASA’s Citizen Science for Earth Systems Program.
      Volunteer classifications of the species present in trail camera photos have fueled many different scientific investigations over the years. You, too, can get involved in the merriment by visiting the project’s site on the Zooniverse crowdsourcing platform and helping classify their latest photo season today!
      Facebook logo @nasascience @nasascience Instagram logo @nasascience Linkedin logo @nasascience Share








      Details
      Last Updated Aug 06, 2025 Related Terms
      Citizen Science Earth Science Division Explore More
      4 min read STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms


      Article


      2 days ago
      2 min read Radio JOVE Volunteers Tune In to the Sun’s Low Notes


      Article


      2 weeks ago
      2 min read Bring NASA Science into Your Library!


      Article


      2 weeks ago
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This view of tracks trailing NASA’s Curiosity was captured July 26, 2025, as the rover simultaneously relayed data to a Mars orbiter. Combining tasks like this more efficiently uses energy generated by Curiosity’s nuclear power source, seen here lined with rows of white fins at the back of the rover.NASA/JPL-Caltech This is the same view of Curiosity’s July 25 mosaic, with labels indicating some key parts of the rover involved in recent efficiency improvements, plus a few prominent locations in the distance.NASA/JPL-Caltech New capabilities allow the rover to do science with less energy from its batteries.
      Thirteen years since Curiosity landed on Mars, engineers are finding ways to make the NASA rover even more productive. The six-wheeled robot has been given more autonomy and the ability to multitask — improvements designed to make the most of Curiosity’s energy source, a multi-mission radioisotope thermoelectric generator (MMRTG). Increased efficiency means the rover has ample power as it continues to decipher how the ancient Martian climate changed, transforming a world of lakes and rivers into the chilly desert it is today.
      Curiosity recently rolled into a region filled with boxwork formations. These hardened ridges are believed to have been created by underground water billions of years ago. Stretching for miles on this part of Mount Sharp, a 3-mile-tall (5-kilometer-tall) mountain, the formations might reveal whether microbial life could have survived in the Martian subsurface eons ago, extending the period of habitability farther into when the planet was drying out.
      NASA’s Curiosity viewed this rock shaped like a piece of coral on July 24, 2025, the 4,608th Martian day of the mission. The rover has found many rocks that — like this one — were formed by minerals deposited by ancient water flows combined with billions of years of sandblasting by wind.NASA/JPL-Caltech/MSSS Carrying out this detective work involves a lot of energy. Besides driving and extending a robotic arm to study rocks and cliffsides, Curiosity has a radio, cameras, and 10 science instruments that all need power. So do the multiple heaters that keep electronics, mechanical parts, and instruments operating at their best. Past missions like the Spirit and Opportunity rovers and the InSight lander relied on solar panels to recharge their batteries, but that technology always runs the risk of not receiving enough sunlight to provide power.
      Instead, Curiosity and its younger sibling Perseverance each use their MMRTG nuclear power source, which relies on decaying plutonium pellets to create energy and recharge the rover’s batteries. Providing ample power for the rovers’ many science instruments, MMRTGs are known for their longevity (the twin Voyager spacecraft have relied on RTGs since 1977). But as the plutonium decays over time, it takes longer to recharge Curiosity’s batteries, leaving less energy for science each day.
      The team carefully manages the rover’s daily power budget, factoring in every device that draws on the batteries. While these components were all tested extensively before launch, they are part of complex systems that reveal their quirks only after years in the extreme Martian environment. Dust, radiation, and sharp temperature swings bring out edge cases that engineers couldn’t have expected.
      “We were more like cautious parents earlier in the mission,” said Reidar Larsen of NASA’s Jet Propulsion Laboratory in Southern California, which built and operates the rover. Larsen led a group of engineers who developed the new capabilities. “It’s as if our teenage rover is maturing, and we’re trusting it to take on more responsibility. As a kid, you might do one thing at a time, but as you become an adult, you learn to multitask.”
      More Efficient Science
      Generally, JPL engineers send Curiosity a list of tasks to complete one by one before the rover ends its day with a nap to recharge. In 2021, the team began studying whether two or three rover tasks could be safely combined, reducing the amount of time Curiosity is active.
      For example, Curiosity’s radio regularly sends data and images to a passing orbiter, which relays them to Earth. Could the rover talk to an orbiter while driving, moving its robotic arm, or snapping images? Consolidating tasks could shorten each day’s plan, requiring less time with heaters on and instruments in a ready-to-use state, reducing the energy used. Testing showed Curiosity safely could, and all of these have now been successfully demonstrated on Mars.
      Another trick involves letting Curiosity decide to nap if it finishes its tasks early. Engineers always pad their estimates for how long a day’s activity will take just in case hiccups arise. Now, if Curiosity completes those activities ahead of the time allotted, it will go to sleep early.
      By letting the rover manage when it naps, there is less recharging to do before the next day’s plan. Even actions that trim just 10 or 20 minutes from a single activity add up over the long haul, maximizing the life of the MMRTG for more science and exploration down the road.
      Miles to Go
      In fact, the team has been implementing other new capabilities on Curiosity for years. Several mechanical issues required a rework of how the robotic arm’s rock-pulverizing drill collects samples, and driving capabilities have been enhanced with software updates. When a color filter wheel stopped turning on one of the two cameras mounted on Mastcam, Curiosity’s swiveling “head,” the team developed a workaround allowing them to capture the same beautiful panoramas.
      JPL also developed an algorithm to reduce wear on Curiosity’s rock-battered wheels. And while engineers closely monitor any new damage, they aren’t worried: After 22 miles (35 kilometers) and extensive research, it’s clear that, despite some punctures, the wheels have years’ worth of travel in them. (And in a worst-case scenario, Curiosity could remove the damaged part of the wheel’s “tread” and still drive on the remaining part.)
      Together, these measures are doing their job to keep Curiosity as busy as ever.
      More About Curiosity
      Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington as part of NASA’s Mars Exploration Program portfolio. Malin Space Science Systems in San Diego built and operates Mastcam.
      For more about Curiosity, visit:
      science.nasa.gov/mission/msl-curiosity
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-098
      Share
      Details
      Last Updated Aug 04, 2025 Related Terms
      Curiosity (Rover) Mars Mars Science Laboratory (MSL) Radioisotope Power Systems (RPS) Explore More
      4 min read NASA Tests New Heat Source Fuel for Deep Space Exploration
      Article 2 weeks ago 6 min read Advances in NASA Imaging Changed How World Sees Mars
      Article 3 weeks ago 6 min read NASA Mars Orbiter Learns New Moves After Nearly 20 Years in Space
      Article 1 month ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA/Jonny Kim NASA and its partners have supported humans continuously living and working in space since November 2000. A truly global endeavor, the International Space Station has been visited by more than 280 people from 23 countries and a variety of international and commercial spacecraft. The unique microgravity laboratory has hosted more than 4,000 experiments from more than 5,000 researchers in more than 110 countries. The space station also is facilitating the growth of a commercial market in low Earth orbit for research, technology development, and crew and cargo transportation.
      NASA created a dedicated logo to symbolize this historic achievement. The logo is visible in the cupola of the space station in this July 17, 2025, image. The central astronaut figure is representative of all those who have lived and worked aboard the station during the 25 years of continuous human presence. In the dark sky of space surrounding the astronaut are 15 stars, which symbolize the 15 partner nations that support the orbiting laboratory.
      There is a visual representation of the space station toward the edge of the design, where humans have had a continuous presence for the past 25 years. The Earth represents the planet which the station orbits and that science conducted aboard the orbiting laboratory is for the benefit of all. Integrated into the border of the design is the number “25” to further represent the 25 years of human presence aboard the space station.
      After 25 years of continuous human presence, the space station remains a training and proving ground for deep space missions, enabling NASA to focus on Artemis missions to the Moon and Mars.
      For more information about the International Space Station, please visit https://www.nasa.gov/international-space-station/.
      Text credit: Kara Slaughter
      Image credit: NASA/Jonny Kim
      View the full article
    • By NASA
      NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker This image, taken by NASA’s New Horizons spacecraft on July 14, 2015, is the most accurate natural color image of Pluto. This natural-color image results from refined calibration of data gathered by New Horizons’ color Multispectral Visible Imaging Camera (MVIC). The processing creates images that would approximate the colors that the human eye would perceive, bringing them closer to “true color” than the images released near the encounter. This single color MVIC scan includes no data from other New Horizons imagers or instruments added. The striking features on Pluto are clearly visible, including the bright expanse of Pluto’s icy, nitrogen-and-methane rich “heart,” Sputnik Planitia.
      Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker
      View the full article
  • Check out these Videos

×
×
  • Create New...