Jump to content

Recommended Posts

Posted
low_STSCI-H-p-9440a-k1340x520.png

The Hubble telescope has provided new insights into how stars may have formed many billions of years ago in the early universe. Hubble observations of a pair of star clusters suggest they might be linked through stellar evolution processes.

The pair of clusters is 166,000 light-years from Earth in the Large Magellanic Cloud in the southern constellation Doradus. The clusters are unusually close together for being distinct and separate objects, suggesting that they might be evolutionary relatives.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Did you know some of the brightest sources of light in the sky come from the regions around black holes in the centers of galaxies? It sounds a little contradictory, but it’s true! They may not look bright to our eyes, but satellites have spotted oodles of them across the universe. 
      One of those satellites is NASA’s Fermi Gamma-ray Space Telescope. Fermi has found thousands of these kinds of galaxies since it launched in 2008, and there are many more out there!
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Watch a cosmic gamma-ray fireworks show in this animation using just a year of data from the Large Area Telescope (LAT) aboard NASA’s Fermi Gamma-ray Space Telescope. Each object’s magenta circle grows as it brightens and shrinks as it dims. The yellow circle represents the Sun following its apparent annual path across the sky. The animation shows a subset of the LAT gamma-ray records available for more than 1,500 objects in a continually updated repository. Over 90% of these sources are a type of galaxy called a blazar, powered by the activity of a supermassive black hole. NASA’s Marshall Space Flight Center/Daniel Kocevski Black holes are regions of space that have so much gravity that nothing — not light, not particles, nada — can escape. Most galaxies have supermassive black holes at their centers, and these black holes are hundreds of thousands to billions of times the mass of our Sun. In active galactic nuclei (also called “AGN” for short, or just “active galaxies”) the central region is stuffed with gas and dust that’s constantly falling toward the black hole. As the gas and dust fall, they start to spin and form a disk. Because of the friction and other forces at work, the spinning disk starts to heat up.
      This composite view of the active galaxy Markarian 573 combines X-ray data (blue) from NASA’s Chandra X-ray Observatory and radio observations (purple) from the Karl G. Jansky Very Large Array in New Mexico with a visible light image (gold) from the Hubble Space Telescope. Markarian 573 is an active galaxy that has two cones of emission streaming away from the supermassive black hole at its center. X-ray: NASA/CXC/SAO/A.Paggi et al; Optical: NASA/STScI; Radio: NSF/NRAO/VLA The disk’s heat gets emitted as light, but not just wavelengths of it that we can see with our eyes. We detect light from AGN across the entire electromagnetic spectrum, from the more familiar radio and optical waves through to the more exotic X-rays and gamma rays, which we need special telescopes to spot.
       
      In the heart of an active galaxy, matter falling toward a supermassive black hole creates jets of particles traveling near the speed of light as shown in this artist’s concept. NASA/Goddard Space Flight Center Conceptual Image Lab About one in 10 AGN beam out jets of energetic particles, which are traveling almost as fast as light. Scientists are studying these jets to try to understand how black holes — which pull everything in with their huge amounts of gravity — somehow provide the energy needed to propel the particles in these jets.
      This artist’s concept shows two views of the active galaxy TXS 0128+554, located around 500 million light-years away. Left: The galaxy’s central jets appear as they would if we viewed them both at the same angle. The black hole, embedded in a disk of dust and gas, launches a pair of particle jets traveling at nearly the speed of light. Scientists think gamma rays (magenta) detected by NASA’s Fermi Gamma-ray Space Telescope originate from the base of these jets. As the jets collide with material surrounding the galaxy, they form identical lobes seen at radio wavelengths (orange). The jets experienced two distinct bouts of activity, which created the gap between the lobes and the black hole. Right: The galaxy appears in its actual orientation, with its jets tipped out of our line of sight by about 50 degrees. NASA’s Goddard Space Flight Center Many of the ways we tell one type of AGN from another depend on how they’re oriented from our point of view. With radio galaxies, for example, we see the jets from the side as they’re beaming vast amounts of energy into space. Then there’s blazars, which are a type of AGN that have a jet that is pointed almost directly at Earth, which makes the AGN particularly bright. 
      Blazar 3C 279’s historic gamma-ray flare in 2015 can be seen in this image from the Large Area Telescope on NASA’s Fermi satellite. During the flare, the blazar outshone the Vela pulsar, usually the brightest object in the gamma-ray sky. NASA/DOE/Fermi LAT Collaboration Fermi has been searching the sky for gamma ray sources since 2008. More than half of the sources it has found have been blazars. Gamma rays are useful because they can tell us a lot about how particles accelerate and how they interact with their environment.
      So why do we care about AGN? We know that some AGN formed early in the history of the universe. With their enormous power, they almost certainly affected how the universe changed over time. By discovering how AGN work, we can understand better how the universe came to be the way it is now.
      Share








      Details
      Last Updated Apr 30, 2025 Related Terms
      The Universe Active Galaxies Fermi Gamma-Ray Space Telescope Galaxies Explore More
      8 min read How to Contribute to Citizen Science with NASA


      Article


      24 hours ago
      6 min read Where Does Gold Come From? NASA Data Has Clues


      Article


      1 day ago
      2 min read Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Galaxies



      Black Holes



      Telescopes 101



      Fermi


      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      https://youtu.be/63uNNcCpxHI How are we made of star stuff?

      Well, the important thing to understand about this question is that it’s not an analogy, it’s literally true.

      The elements in our bodies, the elements that make up our bones, the trees we see outside, the other planets in the solar system, other stars in the galaxy. These were all part of stars that existed well before our Sun and Earth and solar system were even formed.

      The universe existed for billions of years before we did. And all of these elements that you see on the periodic table, you see carbon and oxygen and silicon and iron, the common elements throughout the universe, were all put there by previous generations of stars that either blew off winds like the Sun blows off a solar wind, or exploded in supernova explosions and thrust their elements throughout the universe.

      These are the same things that we can trace with modern telescopes, like the Hubble Telescope and the James Webb Space Telescope, the Chandra X-ray Observatory. These are all elements that we can map out in the universe with these observatories and trace back to the same things that form us and the elemental abundances that we see in stars now are the same things that we see in the Earth’s crust, we see in asteroids. And so we know that these are the same elements that were once part of these stars.

      So the question of, “How are we made of star stuff?”, in the words of Carl Sagan, “The cosmos is within us. We are made of star stuff. We are a way for the universe to know itself.”

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Apr 28, 2025 Related Terms
      General Astrophysics Astrophysics Division Chandra X-Ray Observatory Hubble Space Telescope James Webb Space Telescope (JWST) Origin & Evolution of the Universe Science Mission Directorate The Solar System The Universe Explore More
      3 min read NASA Moon Observing Instrument to Get Another Shot at Lunar Ops
      Article 16 mins ago 5 min read NASA 3D Wind Measuring Laser Aims to Improve Forecasts from Air, Space
      Article 1 hour ago 1 min read Earth Science Showcase – Kids Art Collection
      Article 3 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      After years of careful design and preparation, ESA’s Earth Explorer Biomass satellite is set for launch tomorrow, 29 April at 11:15 CEST, aboard a Vega-C rocket from Europe’s Spaceport in French Guiana.
      This groundbreaking mission will offer unprecedented insights into the state and evolution of the world’s forests. By mapping the woody material in Earth’s forests, this revolutionary satellite will play a crucial role in deepening our understanding of how forests influence the global carbon cycle.
      View the full article
    • By NASA
      How Are We Made of Star Stuff? We Asked a NASA Expert
    • By NASA
      NASA’s James Webb Space Telescope has taken the most detailed image of planetary nebula NGC 1514 to date thanks to its unique mid-infrared observations. Webb shows its rings as intricate clumps of dust. It’s also easier to see holes punched through the bright pink central region.NASA, ESA, CSA, STScI, Michael Ressler (NASA-JPL), Dave Jones (IAC) In this photo released on April 14, 2025, NASA’s James Webb Space Telescope revealed the gas and dust ejected by a dying star at the heart of NGC 1514. Using mid-infrared data showed the “fuzzy” clumps arranged in tangled patterns, and a network of clearer holes close to the central stars shows where faster material punched through.
      This scene has been forming for at least 4,000 years — and will continue to change over many more millennia. At the center are two stars that appear as one in Webb’s observation, and are set off with brilliant diffraction spikes. The stars follow a tight, elongated nine-year orbit and are draped in an arc of dust represented in orange.
      One of these stars, which used to be several times more massive than our Sun, took the lead role in producing this scene. “As it evolved, it puffed up, throwing off layers of gas and dust in in a very slow, dense stellar wind,” said David Jones, a senior scientist at the Institute of Astrophysics on the Canary Islands, who proved there is a binary star system at the center in 2017.
      Learn more about planetary nebula NGC 1514.
      Image credit: NASA, ESA, CSA, STScI, Michael Ressler (NASA-JPL), Dave Jones (IAC)
      View the full article
  • Check out these Videos

×
×
  • Create New...