Jump to content

High School Aerospace Scholars Launches Dreams, Inspires the Artemis Generation 


Recommended Posts

  • Publishers
Posted

To put boots on the Moon—and keep them there—will require bold thinkers ready to tackle the challenges of tomorrow. 

That’s why NASA’s Office of STEM Engagement at Johnson Space Center in Houston is on a mission to empower the next generation of explorers in science, technology, engineering, and mathematics (STEM). 

Through the High School Aerospace Scholars (HAS) program, Texas juniors have the opportunity to immerse themselves in space exploration through interactive learning experiences. 

“HAS is such an important program because we introduce students to the multitude of careers and experiences that contribute to space exploration,” said NASA HAS Activity Manager Jakarda Varnado. “We go beyond asking students who they want to be when they grow up and ask what problems they want to solve.” 

Meet Former HAS Student Madeline King

Madeline King always knew she wanted a career in STEM, with a dream of working at NASA influencing her decision to pursue a degree in Engineering.  

Before joining HAS, King thought scientists mainly worked in labs and engineers focused on design. But the HAS program revealed a different reality—scientists and engineers often collaborated on interdisciplinary projects, sometimes even sharing roles.   

imoc-headshot.jpg?w=869
Official portrait of Madeline King.
NASA

The program broadened King’s perspective on the diverse paths a STEM degree can lead to. It showed her that careers at NASA offer opportunities across various fields and disciplines. 

King said participating in HAS helped to strengthen her problem-solving skills and ability to think creatively. The program required students to tackle complex technical tasks independently, emphasizing self-directed learning. King describes HAS as fun, challenging, and engaging, which helped her excel in technical roles.  

“Learning to digest and internalize this information is a skill I continue to use when getting up to speed in new groups or taking on projects outside my current skill set,” said King.  

Though King joined HAS during COVID-19, which limited in-person interactions, the experience still made an impact. Her mentors also offered insights into graduate school options, helping her weigh the benefits of advanced degrees against gaining hands-on experience at NASA.  

The program opened doors to internships at Johnson in the Engineering Robotics and the Avionics Systems Integration Division. Now, she is studying mechanical engineering at the University of Houston, bringing passion and experience in electronics, robotics, education, project management, and aviation. 

“Early on in my internship journey, HAS shined on my resume,” she said. “It demonstrated that I already had experience with NASA’s culture, values, and mission.” 

Looking forward, King envisions herself as a flight controller, contributing to both the International Space Station Program and the Artemis campaign. Driven by her passion for NASA’s mission, King is just beginning her journey and is eager to be part of the future of space exploration. 

“My internships since HAS have allowed me to make small contributions to both of these missions, and I’m excited to specialize as a full-time engineer,” said King.  

Meet Caroline Vergara

As a first-generation student, Caroline Vergara lacked the resources to fully explore her interests in aerospace engineering, let alone envision what that career might look like. That all changed when she was accepted into NASA’s HAS program. 

“The exposure to real-world innovation ignited my desire to be part of something bigger, something that pushes the boundaries of human knowledge and capability,” she said.  

20191006-2346302-e1735058858359.jpeg?w=1
Caroline Vergara announces the launch of the model rocket she built during her time in the HAS program. 
NASA/David DeHoyos

Touring NASA facilities and watching engineers work on projects opened her eyes to the possibilities in STEM. Today, Vergara is a propulsion design engineering intern at United Launch Alliance, contributing to the Vulcan rocket as a Brooke Owens Fellow. 

Vergara initially thought working in STEM was mostly about writing equations or running simulations but HAS showed her it is so much more. “A STEM career is about curiosity, collaboration, and the power to change the world,” she said. 

During the program, Vergara joined a team of students to tackle a mission simulation project. They called themselves “Charlie and the Rocket Factory” and designed a prototype rocket together. Working with peers from all over the country showed her the power of diverse perspectives. She experienced firsthand what it was like to be part of a team with a shared vision, working toward something bigger than themselves. 

Vergara also discovered her love for 3D printing and computer-aided design through HAS. She spent hours fine-tuning designs, fascinated by the process of turning digital models into physical reality. 

Her experience with HAS also sparked a desire to give back. She returned to her hometown to share her story and encourage other students to pursue STEM. Partnering with Johnson Community Engagement Lead Jessica Cordero, she organized video conferences with NASA engineers on International Women in Engineering Day to inspire a new wave of students to be part of space exploration. 

“The aerospace industry is entering a new space age, and we have the unique opportunity to put humans back on the Moon and explore beyond,” she said. 

Her advice to the Artemis Generation is: “Go for it! You could be part of the generation that changes humanity’s destiny.” 

A woman wearing a red ‘University of Houston The Honors College’ t-shirt smiles and holds up a hand gesture in front of the Cullen College of Engineering building, with plants and flowers in the foreground.
Caroline Vergara, University of Houston Class of 2025.

As a mechanical engineering honors student at the University of Houston and chief engineer of Space City Rocketry, Vergara envisions contributing to the Artemis campaign and advancing NASA’s mission to explore the cosmos. 

“My dream is to contribute to space exploration efforts that put humans back on the Moon and beyond, and to one day work in Mission Control Center, where I can help guide those historic missions into the future.” 

Meet Iker Aguirre

For Iker Aguirre, the spark that ignited his journey toward a career in aerospace was lit by a passing conversation during his freshman year of high school. A senior classmate described the HAS program as a once-in-a-lifetime experience that cemented his passion for aerospace. That moment stayed with Aguirre, and when the opportunity arose, he did not hesitate to apply. 

20230227-135808-rotated.jpg?w=1536
Iker Aguirre inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida.

“HAS showed me that in order to accomplish something as complex as Artemis, you need a well-rounded set of teams and individuals,” he said. “You don’t need to study aerospace to be in the aerospace industry!” 

In 2020, Aguirre participated during the remote-only version of HAS, but he recalls that the program still gave him a much deeper understanding of the spaceflight industry. 

Despite already being interested in aerospace, Aguirre says HAS broadened his horizons, showing him the diverse pathways into the field. Through collaborative projects with peers across Texas, he discovered that solving the challenges of space exploration requires more than just aerospace engineers.  

The program’s emphasis on teamwork left a lasting impression. During his time with HAS, Aguirre found himself working alongside students from different backgrounds, each bringing unique perspectives to problem-solving. It introduced him to dedicated and passionate people with various personalities and cultures who all shared similar dreams and aspirations as him.  

Aguirre credits HAS with not only refining his technical skills but also shaping his approach to innovation and teamwork. That experience paid off as he moved through his academic and professional journey, including Pathways program internships with NASA’s Johnson Space Center in Houston and Marshall Space Flight Center in Huntsville, Alabama.  

“Getting connections at NASA through HAS helped me open many doors so far,” said Aguirre. “I met many good friends through HAS and my internship at Johnson, which I value to this day.” 

Now pursuing a degree in rocket propulsion, with a focus on turbomachinery design, Aguirre remains committed to advancing space exploration. He hopes to contribute to humanity’s mobility in space, tackling challenges in rocket engine feed systems.  

A young man wearing glasses and a NASA t-shirt smiles for a selfie inside a space-themed exhibit, with a suspended model airplane, astronaut suit display, and colorful murals in the background.
Iker Aguirre at NASA’s Johnson Space Center during his HAS internship.

Through HAS, Aguirre found not just an educational program, but a community and a purpose. “My journey will forever be interlinked with NASA’s core values of benefiting humanity on and off the Earth,” he said. “I hope to inspire others just as much as the people who inspired me through my journey!” 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Science Artemis Mission Accomplished! Artemis… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   5 min read
      Mission Accomplished! Artemis ROADS III National Challenge Competitors Celebrate their Achievements
      The NASA Science Activation program’s Northwest Earth and Space Sciences Pathways (NESSP) team has successfully concluded the 2024–2025 Artemis ROADS III National Challenge, an educational competition that brought real NASA mission objectives to student teams (and reached more than 1,500 learners) across the country. From December 2024 through May 2025, over 300 teams of upper elementary, middle, and high school students from 22 states participated, applying STEM (Science, Technology, Engineering, and Mathematics) skills in exciting and creative ways.
      Participants tackled eight Mission Objectives inspired by NASA’s Artemis missions, which aim to return humans to the Moon. Students explored challenges such as:
      Designing a water purification system for the Moon inspired by local water cycles Developing a Moon-based agricultural plan based on experimental results Programming a rover to autonomously navigate lunar tunnels Engineering and refining a human-rated water bottle rocket capable of safely returning a “chip-stronaut” to Earth Envisioning their future careers through creative projects like graphic novels or video interviews Exploring NASA’s Artemis program through a new Artemis-themed Lotería game In-person hub events were hosted by Northern Arizona University, Central Washington University, and Montana State University, where teams from Washington, Montana, and Idaho gathered to present their work, collaborate with peers, and experience life on a college campus. Students also had the chance to connect virtually with NASA scientists and engineers through NESSP’s NASA Expert Talks series.
      “Artemis ROADS III is NESSP’s eighth ROADS challenge, and I have to say, I think it’s the best one yet. It’s always inspiring to see so many students across the country engage in a truly meaningful STEM experience. I heard from several students and educators that participating in the challenge completely changed their perspective on science and engineering. I believe that’s because this program is designed to let students experience the joy of discovery and invention—driven by both teamwork and personal creativity—that real scientists and engineers love about their work. We also show students the broad range of STEM expertise NASA relies on to plan and carry out a mission like Artemis. Most importantly, it gives them a chance to feel like they are part of the NASA mission, which can be truly transformative.”
       – Dr. Darci Snowden, Director, NESSP
      NESSP proudly recognizes the following teams for completing all eight Mission Objectives and the Final Challenge:
      Space Pringles, 3rd-5th Grade, San Antonio, TX  Space Axolotls, 3rd-5th Grade, Roberts, MT  TEAM Wild, 6th-8th Grade, Eagle Mountain, UT  Pessimistic Penguins, 6th-8th Grade, Eagle Mountain, UT  Dwarf Planets, 6th-8th Grade, Eagle Mountain, UT  Astronomical Rovers, 6th-8th Grade, Eagle Mountain, UT  Cosmic Honeybuns, 6th-8th Grade, Eagle Mountain, UT  Houston we have a Problem, 6th-8th Grade, Eagle Mountain, UT  FBI Wanted List, 6th-8th Grade, Eagle Mountain, UT  Lunar Legion, 6th-8th Grade, San Antonio, TX  Artemis Tax-Free Space Stallions, 6th-8th Grade, Egg Harbor, NJ  Aquila, 6th-8th Grade, Gooding, ID  Space Warriors, 6th-8th Grade, Wapato, WA  Team Cygnus, 6th-8th Grade, Red Lodge, MT  Maple RocketMen, 6th-8th Grade, Northbrook, IL  RGB Hawks, 6th-8th Grade, Sagle, ID  The Blue Moon Bigfoots, 6th-8th Grade, Medford, OR  W.E.P.Y.C.K., 6th-8th Grade, Roberts, MT  Lunar Dawgz, 6th-8th Grade, Safford, AZ  ROSEBUD ROCKETEERS, 6th-8th Grade, Rosebud, MT  The Cosmic Titans, 6th-8th Grade, Thomson Falls, MT  The Chunky Space Monkeys, 6th-8th Grade, Naches, WA  ROSEBUD RED ANGUS, 9th-12th Grade, Rosebud, MT  Bulky Bisons, 9th-12th Grade, Council Grove, KS  The Falling Stars, 9th-12th Grade, Thomson Falls, MT  The Roadkillers, 9th-12th Grade, Thomson Falls, MT  The Goshawks, 9th-12th Grade, Thomson Falls, MT  Sequim Cosmic Catalysts, 9th-12th Grade, Sequim, WA  Spuddie Buddies, 9th-12th Grade, Moses Lake, WA  Astrocoquí 2, 9th-12th Grade, Mayaguez, PR  Big Sky Celestials, 9th-12th Grade, Billings, MT  TRYOUTS, 9th-12th Grade, Columbus, MT  Cosmonaughts, 9th-12th Grade, Columbus, MT  TCCS 114, 9th-12th Grade, Tillamook, OR  Marvin’s Mighty Martians, 9th-12th Grade, Simms, TX You can see highlights of these teams’ work in the Virtual Recognition Ceremony video on the NESSP YouTube channel. The presentation also features the teams selected to travel to Kennedy Space Center in August of 2025, the ultimate prize for these future space explorers!
      In addition to student engagement, the ROADS program provided professional development workshops and NGSS-aligned classroom resources to support K–12 educators. Teachers are invited to explore these materials and register for the next round of workshops, beginning in August 2025: https://nwessp.org/professional-development-registration.
      For more information about NESSP, its programs, partners, and the ROADS National Challenge, visit www.nwessp.org or contact info@nwessp.org.
       ———–
      NASA’s Northwest Earth and Space Science Pathways’ (NESSP) project is supported by NASA cooperative agreement award number 80NSSC22M0006 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      A water bottle rocket launches into the air carrying its precious chip-stronaut cargo. Share








      Details
      Last Updated Jun 23, 2025 Editor NASA Science Editorial Team Related Terms
      Artemis Biological & Physical Sciences Planetary Science Science Activation Explore More
      3 min read NASA Scientists Find Ties Between Earth’s Oxygen and Magnetic Field


      Article


      5 days ago
      3 min read NASA Interns Conduct Aerospace Research in Microgravity


      Article


      4 weeks ago
      5 min read Percolating Clues: NASA Models New Way to Build Planetary Cores


      Article


      1 month ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A collage of artist concepts highlighting the novel approaches proposed by the 2025 NIAC awardees for possible future missions. Through the NASA Innovative Advanced Concepts (NIAC) program, NASA nurtures visionary yet credible concepts that could one day “change the possible” in aerospace, while engaging America’s innovators and entrepreneurs as partners in the journey.  
      These concepts span various disciplines and aim to advance capabilities such as finding resources on distant planets, making space travel safer and more efficient, and even providing benefits to life here on Earth. The NIAC portfolio of studies also includes several solutions and technologies that could help NASA achieve a future human presence on Mars. One concept at a time, NIAC is taking technology concepts from science fiction to reality.  
      Breathing beyond Earth 
      Astronauts have a limited supply of water and oxygen in space, which makes producing and maintaining these resources extremely valuable. One NIAC study investigates a system to separate oxygen and hydrogen gas bubbles in microgravity from water, without touching the water directly. Researchers found the concept can handle power changes, requires less clean water, works in a wide range of temperatures, and is more resistant to bacteria than existing oxygen generation systems for short-term crewed missions. These new developments could make it a great fit for a long trip to Mars.  
      Newly selected for another phase of study, the team wants to understand how the system will perform over long periods in space and consider ways to simplify the system’s build. They plan to test a large version of the system in microgravity in hopes of proving how it may be a game changer for future missions. 
      Detoxifying water on Mars
      Unlike water on Earth, Mars’ water is contaminated with toxic chemical compounds such as perchlorates and chlorates. These contaminants threaten human health even at tiny concentrations and can easily corrode hardware and equipment. Finding a way to remove contaminates from water will benefit future human explorers and prepare them to live on Mars long term. 
      Researchers are creating a regenerative perchlorate reduction system that uses perchlorate reduction pathways from naturally occurring bacteria. Perchlorate is a compound comprised of oxygen and chlorine that is typically used for rocket propellant. These perchlorate reduction pathways can be engineered into a type of bacterium that is known for its remarkable resilience, even in the harsh conditions of space. The system would use these enzymes to cause the biochemical reduction of chlorate and perchlorate to chloride and oxygen, eliminating these toxic molecules from the water. With the technology to detoxify water on Mars, humans could thrive on the Red Planet with an abundant water supply. 
      Tackling deep space radiation exposure 
      Mitochondria are the small structures within cells often called the “powerhouse,” but what if they could also power human health in space? Chronic radiation exposure is among the many threats to long-term human stays in space, including time spent traveling to and from Mars. One NIAC study explores transplanting new, undamaged mitochondria to radiation-damaged cells and investigates cell responses to relevant radiation levels to simulate deep-space travel. Researchers propose using in vitro human cell models – complex 3D structures grown in a lab to mimic aspects of organs – to demonstrate how targeted mitochondria replacement therapy could regenerate cellular function after acute and long-term radiation exposure.  
      While still in early stages, the research could help significantly reduce radiation risks for crewed missions to Mars and beyond. Here on Earth, the technology could also help treat a wide variety of age-related degenerative diseases associated with mitochondrial dysfunction. 
      Suiting up for Mars 
      Mars is no “walk in the park,” which is why specialized spacesuits are essential for future missions. Engineers propose using a digital template to generate custom, cost-effective, high-performance spacesuits. This spacesuit concept uses something called digital thread technology to protect crewmembers from the extreme Martian environment, while providing the mobility to perform daily Mars exploration endeavors, including scientific excursions. 
      This now completed NIAC study focused on mapping key spacesuit components and current manufacturing technologies to digital components, identifying technology gaps, benchmarking required capabilities, and developing a conceptional digital thread model for future spacesuit development and operational support. This research could help astronauts suit up for Mars and beyond in a way like never before.   
      Redefining what’s possible 
      From studying Mars to researching black holes and monitoring the atmosphere of Venus, NIAC concepts help us push the boundaries of exploration. By collaborating with innovators and entrepreneurs, NASA advances concepts for future and current missions while energizing the space economy.  
      If you have a visionary idea to share, you can apply to NIAC’s 2026 Phase I solicitation now until July 15.
      Facebook logo @NASATechnology @NASA_Technology Explore More
      4 min read NASA Tech to Use Moonlight to Enhance Measurements from Space
      Article 3 days ago 3 min read NASA’s Lunar Rescue System Challenge Supports Astronaut Safety
      Article 6 days ago 2 min read Tuning a NASA Instrument: Calibrating MASTER
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      Share
      Details
      Last Updated Jun 23, 2025 EditorLoura Hall Related Terms
      Space Technology Mission Directorate NASA Innovative Advanced Concepts (NIAC) Program Technology View the full article
    • By NASA
      3 Min Read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Better understanding the lunar lighting environment will help NASA prepare astronauts for the harsh environment Artemis III Moonwalkers will experience on their mission. NASA’s Artemis III mission will build on earlier test flights and add new capabilities with the human landing system and advanced spacesuits to send the first astronauts to explore the lunar South Pole and prepare humanity to go to Mars.
      Using high-intensity lighting and low-fidelity mock-ups of a lunar lander, lunar surface, and lunar rocks, NASA engineers are simulating the Moon’s environment at the Flat Floor Facility to study and experience the extreme lighting condition. The facility is located at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      NASA engineers inside the Flat Floor Facility at Marshall Space Flight Center in Huntsville, Alabama, mimic lander inspection and assessment tasks future Artemis astronauts may do during Artemis III. Lights are positioned at a low angle to replicate the strong shadows that are cast across the lunar South Pole. NASA/Charles Beason “The goal is really to understand how shadows will affect lander visual inspection and assessment efforts throughout a future crewed mission,” said Emma Jaynes, test engineer at the facility. “Because the Flat Floor Facility is similar to an inverted air hockey table, NASA and our industry partners can rearrange large, heavy structures with ease – and inspect the shadows’ effects from multiple angles, helping to ensure mission success and astronaut safety for Artemis III.”
      Data and analysis from testing at NASA are improving models Artemis astronauts will use in preparation for lander and surface operations on the Moon during Artemis III. The testing also is helping cross-agency teams evaluate various tools astronauts may use.
      The 86-foot-long by 44-foot-wide facility at NASA is one of the largest, flattest, and most stable air-bearing floors in the world, allowing objects to move across the floor without friction on a cushion of air.
      Test teams use large, 12-kilowatt and 6-kilowatt lights to replicate the low-angle, high contrast conditions of the lunar South Pole. Large swaths of fabric are placed on top of the epoxy floor to imitate the reflective properties of lunar regolith. All the mock-ups are placed on air bearings, allowing engineers to easily move and situate structures on the floor.
      The Flat Floor Facility is an air-bearing floor, providing full-scale simulation capabilities for lunar surface systems by simulating zero gravity in two dimensions. Wearing low-fidelity materials, test engineers can understand how the extreme lighting of the Moon’s South Pole could affect surface operations during Artemis III. NASA/Charles Beason “The Sun is at a permanent low angle at the South Pole of the Moon, meaning astronauts will experience high contrasts between the lit and shadowed regions,” Jaynes said. “The color white can become blinding in direct sunlight, while the shadows behind a rock could stretch for feet and ones behind a lander could extend for miles.”
      The laboratory is large enough for people to walk around and experience this phenomenon with the naked eye, adding insight to what NASA calls ‘human in-the-loop testing.
      NASA is working with SpaceX to develop the company’s Starship Human Landing System to safely send Artemis astronauts to the Moon’s surface and back to lunar orbit for Artemis III.
      Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all. 
      For more information about Artemis missions, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Jun 17, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Human Landing System Program Artemis Artemis 3 General Humans in Space Marshall Space Flight Center Explore More
      4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      Article 2 months ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 2 months ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System
      Article 7 months ago Keep Exploring Discover More Topics From NASA
      Artemis III
      Gateway Lunar Space Station
      Built with international and industry partners, Gateway will be humanity’s first space station around the Moon. It will support a…
      Space Launch System (SLS)
      Humans In Space
      View the full article
    • By NASA
      Acting NASA Administrator Janet Petro and Anke Kaysser-Pyzalla, chair, Executive Board, DLR (German Aerospace Center, or Deutsches Zentrum für Luft- und Raumfahrt), signed an agreement June 16, 2025, to continue a partnership on space medicine research. With this agreement, DLR will provide new radiation sensors aboard the Orion spacecraft during NASA’s Artemis II mission. Scheduled for launch no later than April 2026, Artemis II will mark the first test flight with crew under Artemis.Credit: DLR While attending the Paris Air Show June 16, NASA acting Administrator Janet Petro signed an agreement with DLR (German Aerospace Center, or Deutsches Zentrum für Luft- und Raumfahrt) to continue a partnership in space medicine research. This renewed collaboration builds on previous radiation mitigation efforts for human spaceflight. As NASA advances the Trump-Vance Administration’s goals for exploration on the Moon and Mars, minimizing exposure to space radiation is one of the key areas the agency is working to protect crew on long duration missions.
      With this agreement, DLR will leverage its human spaceflight expertise and provide new radiation sensors aboard the Orion spacecraft during NASA’s Artemis II mission, building on previous work in this area during the Artemis I mission. Scheduled for launch no later than April 2026, Artemis II will mark the first test flight with crew under Artemis.
      “In keeping with the historic agreements NASA has made with international partners as a part of Artemis, I am pleased to sign a new NASA-DLR joint agreement today, to enable radiation research aboard Artemis II,” said acting NASA Administrator Janet Petro. “The German Aerospace Center has been a valuable partner in Artemis, having previously worked with NASA to test technology critical to our understanding of radiation on humans aboard an Orion spacecraft on Artemis I and providing a CubeSat as part of Artemis II. Following a productive meeting between President Trump and German Chancellor Merz earlier this month, I am excited to build upon our great partnership with Germany.”
      During the Artemis II mission’s planned 10-day journey around the Moon and back, four of DLR’s newly developed M-42 extended (M-42 EXT) radiation detectors will be on board, contributing vital data to support astronaut safety. This next-generation device represents a new phase of research as NASA and DLR continue working together to safeguard human health in space.
      Under the leadership of President Trump, America’s Artemis campaign has reignited NASA’s ambition, sparking international cooperation and cutting-edge innovation. The continued partnership with DLR and the deployment of their advanced M-42 EXT radiation detectors aboard Artemis II exemplifies how the Trump-Vance Administration is leading a Golden Era of Exploration and Innovation that puts American astronauts on the path to the Moon, Mars, and beyond.
      “To develop effective protective measures against the impact of space radiation on the human body, comprehensive and coherent radiation measurements in open space are essential,” says Anke Pagels-Kerp, divisional board member for space at DLR. “At the end of 2022, Artemis I carried 12,000 passive and 16 active detectors inside the Helga and Zohar mannequins, which flew aboard the Orion spacecraft as part of DLR’s MARE project. These provided a valuable dataset – the first continuous radiation measurements ever recorded beyond low Earth orbit. We are now excited to take the next step together with NASA and send our upgraded radiation detectors around the Moon on the Artemis II mission.”
      Through the Artemis campaign, the agency will establish a long-term presence on the Moon for scientific exploration with our commercial and international partners, learn how to live and work away from home, and prepare for future human exploration of Mars.
      For more information about Artemis, visit:
      https://www.nasa.gov/artemis
      -end-
      Bethany Stevens / Rachel Kraft
      Headquarters
      202-358-1600
      bethany.c.stevens@nasa.gv / rachel.h.kraft@nasa.gov
      Share
      Details
      Last Updated Jun 17, 2025 LocationNASA Headquarters Related Terms
      Artemis Artemis 2 NASA Headquarters View the full article
    • By NASA
      Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025. NASA/Isaac Watson NASA and the Department of Defense (DoD) teamed up June 11 and 12 to simulate emergency procedures they would use to rescue the Artemis II crew in the event of a launch emergency. The simulations, which took place off the coast of Florida and were supported by launch and flight control teams, are preparing NASA to send four astronauts around the Moon and back next year as part of the agency’s first crewed Artemis mission.
      The team rehearsed procedures they would use to rescue the crew during an abort of NASA’s Orion spacecraft while the SLS (Space Launch System) rocket is still on the launch pad, as well as during ascent to space. A set of test mannequins and a representative version of Orion called the Crew Module Test Article, were used during the tests.
      The launch team at NASA’s Kennedy Space Center in Florida, flight controllers in mission control at the agency’s Johnson Space Center in Houston, as well as the mission management team, all worked together, exercising their integrated procedures for these emergency scenarios.
      Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025.NASA/Isaac Watson “Part of preparing to send humans to the Moon is ensuring our teams are ready for any scenario on launch day,” said Lakiesha Hawkins, NASA’s assistant deputy associate administrator for the Moon to Mars Program, and who also is chair of the mission management team for Artemis II. “We’re getting closer to our bold mission to send four astronauts around the Moon, and our integrated testing helps ensure we’re ready to bring them home in any scenario.”
      The launch pad abort scenario was up first. The teams conducted a normal launch countdown before declaring an abort before the rocket was scheduled to launch. During a real pad emergency, Orion’s launch abort system would propel Orion and its crew a safe distance away and orient it for splashdown before the capsule’s parachutes would then deploy ahead of a safe splashdown off the coast of Florida.
      Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025. NASA/Isaac Watson For the simulated splashdown, the test Orion with mannequins aboard was placed in the water five miles east of Kennedy. Once the launch team made the simulated pad abort call, two Navy helicopters carrying U.S. Air Force pararescuers departed nearby Patrick Space Force Base. The rescuers jumped into the water with unique DoD and NASA rescue equipment to safely approach the spacecraft, retrieve the mannequin crew, and transport them for medical care in the helicopters, just as they would do in the event of an actual pad abort during the Artemis II mission.
      The next day focused on an abort scenario during ascent to space.
      The Artemis recovery team set up another simulation at sea 12 miles east of Kennedy, using the Orion crew module test article and mannequins. With launch and flight control teams supporting, as was the Artemis II crew inside a simulator at Johnson, the rescue team sprung into action after receiving the simulated ascent abort call and began rescue procedures using a C-17 aircraft and U.S. Air Force pararescuers. Upon reaching the capsule, the rescuers jumped from the C-17 with DoD and NASA unique rescue gear. In an actual ascent abort, Orion would separate from the rocket in milliseconds to safely get away prior to deploying parachutes and splashing down.
      Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for an ascent abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Thursday, June 12, 2025. NASA/Isaac Watson Rescue procedures are similar to those used in the Underway Recovery Test conducted off the California coast in March. This demonstration ended with opening the hatch and extracting the mannequins from the capsule, so teams stopped without completing the helicopter transportation that would be used during a real rescue.
      Exercising procedures for extreme scenarios is part of NASA’s work to execute its mission and keep the crew safe. Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all. 
      View the full article
  • Check out these Videos

×
×
  • Create New...