Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Artist’s concept of the star HIP 67522 with a flare erupting toward an orbiting planet, HIP 67522 b. A second planet, HIP 67522 c, is shown in the background. Janine Fohlmeister, Leibniz Institute for Astrophysics Potsdam The Discovery
      A giant planet some 400 light-years away, HIP 67522 b, orbits its parent star so tightly that it appears to cause frequent flares from the star’s surface, heating and inflating the planet’s atmosphere.
      Key Facts
      On planet Earth, “space weather” caused by solar flares might disrupt radio communications, or even damage satellites. But Earth’s atmosphere protects us from truly harmful effects, and we orbit the Sun at a respectable distance, out of reach of the flares themselves.
      Not so for planet HIP 67522 b. A gas giant in a young star system – just 17 million years old – the planet takes only seven days to complete one orbit around its star. A “year,” in other words, lasts barely as long as a week on Earth. That places the planet perilously close to the star. Worse, the star is of a type known to flare – especially in their youth.
      In this case, the proximity of the planet appears to result in fairly frequent flaring.
      Details
      The star and the planet form a powerful but likely a destructive bond. In a manner not yet fully understood, the planet hooks into the star’s magnetic field, triggering flares on the star’s surface; the flares whiplash energy back to the planet. Combined with other high-energy radiation from the star, the flare-induced heating appears to have increased the already steep inflation of the planet’s atmosphere, giving HIP 67522 b a diameter comparable to our own planet Jupiter despite having just 5% of Jupiter’s mass.
      This might well mean that the planet won’t stay in the Jupiter size-range for long. One effect of being continually pummeled with intense radiation could be a loss of atmosphere over time. In another 100 million years, that could shrink the planet to the status of a “hot Neptune,” or, with a more radical loss of atmosphere, even a “sub-Neptune,” a planet type smaller than Neptune that is common in our galaxy but lacking in our solar system.
      Fun Facts
      Four hundred light-years is much too far away to capture images of stellar flares striking orbiting planets. So how did a science team led by Netherlands astronomer Ekaterina Ilin discover this was happening? They used space-borne telescopes, NASA’s TESS (Transiting Exoplanet Survey Satellite) and the European Space Agency’s CHEOPS (CHaracterising ExoPlanets Telescope), to track flares on the star, and also to trace the path of the planet’s orbit.
      Both telescopes use the “transit” method to determine the diameter of a planet and the time it takes to orbit its star. The transit is a kind of mini-eclipse. As the planet crosses the star’s face, it causes a tiny dip in starlight reaching the telescope. But the same observation method also picks up sudden stabs of brightness from the star – the stellar flares. Combining these observations over five years’ time and applying rigorous statistical analysis, the science team revealed that the planet is zapped with six times more flares than it would be without that magnetic connection.   
      The Discoverers
      A team of scientists from the Netherlands, Germany, Sweden, and Switzerland, led by Ekaterina Ilin of the Netherlands Institute for Radio Astronomy, published their paper on the planet-star connection, “Close-in planet induces flares on its host star,” in the journal Nature on July 2, 2025.
      Keep Exploring Discover More Topics From NASA
      Search for Life



      Stars



      Galaxies



      Black Holes


      Explore This Section Exoplanets Home Exoplanets Overview Exoplanets Facts Types of Exoplanets Stars What is the Universe Search for Life The Big Questions Are We Alone? Can We Find Life? The Habitable Zone Why We Search Target Star Catalog Discoveries Discoveries Dashboard How We Find and Characterize Missions People Exoplanet Catalog Immersive The Exoplaneteers Exoplanet Travel Bureau 5 Ways to Find a Planet Strange New Worlds Universe of Monsters Galaxy of Horrors News Stories Blog Resources Get Involved Glossary Eyes on Exoplanets Exoplanet Watch More Multimedia ExEP View the full article
    • By European Space Agency
      Astronomers using the NASA/ESA/CSA James Webb Space Telescope have captured compelling evidence of a planet with a mass similar to Saturn orbiting the young nearby star TWA 7.
      If confirmed, this would represent Webb’s first direct image discovery of a planet, and the lightest planet ever seen with this technique.
      View the full article
    • By European Space Agency
      Video: 02:08:03 ESA’s Living Planet Symposium, one of the world’s leading Earth observation conferences, opened today in Vienna. The plenary session began at 10:30 CEST and included addresses from ESA Director General Josef Aschbacher and ESA Director of Earth Observation Programmes Simonetta Cheli, as well as Margit Mischkulnig, from the Austrian Federal Ministry for Innovation.
      There were video addresses from President of Austria, Alexander van der Bellen, Federal Minister for Innovation, Mobility and Infrastructure Republic of Austria Peter Hanke and the EU Commissioner for Defence and Space Andrius Kubilius. Representatives of the United Nations Office for Outer Space Affairs, ECMWF, IPCC, Eumetsat, Nordic Bildung and ETH Zurich also spoke during the opening session.
      The first images from Biomass, ESA’s forest mission, launched earlier this year, were also presented during the opening plenary.
      More than 6500 participants from almost 120 countries signed up to attend the event. With more than 4200 scientific presentations and posters, the symposium provides a forum and meeting point for scientists, academics and space industry representatives, as well as students and citizens.
      The Living Planet Symposium takes place every three years and this year the focus is ‘from observation to climate action and sustainability for Earth’. Held in the Austrian capital over five days from today to 27 June, participants can take part in discussions on how we can work together in the fields of Earth science and with the Earth observation industry to ensure robust data and promote effective climate action to address the environmental crisis, with presentations also on new trends in Earth observation.
      Watch more videos from the Living Planet Symposium 2025.
      View the full article
    • By USH
      Evidence points to the existence of a massive planet once located between Mars and Jupiter, known to some as Maldek. This ancient world is believed to have had a large moon, complete with oceans, an atmosphere, and possibly even life, orbiting it for millions of years. 

      Maldek is thought to have once been home to a highly advanced humanoid civilization before meeting a cataclysmic end, likely the result of either internal collapse, through nuclear war, technological abuse, or spiritual decline, or an external force, whether natural or engineered. Its destruction scattered debris across the solar system, forming what we now know as the asteroid belt. 
      As for its large moon, it was cast adrift and eventually settled into a new orbit around the Sun. Today, we know that moon as Mars. 
      This theory sheds light on several of Mars’ mysteries: the stark contrast between its two hemispheres, the presence of tidal bulges typically seen in moons, and the unusual nuclear isotopes in its soil, matching those produced by atomic explosions. 
      For decades, government scientists have suppressed this information. But the truth remains, etched into planetary scars, buried beneath ancient monuments, and encoded in the mathematical patterns of our solar system’s violent past. 
      Additional: According to some alternative theories, a remnant of Maldek’s civilization escaped the planet’s cataclysmic destruction, seeking refuge on Mars, a world that once pulsed with life and bore a striking resemblance to Earth. For a time, they thrived. But Mars, too, would not remain untouched. Whether through the slow unraveling of its atmosphere or the lingering shadows of interplanetary war, Mars fell into decline. And so, the survivors journeyed again, this time to Earth. Shrouded in mystery, their presence may have shaped early human consciousness, remembered through the ages as ancient gods or sky beings.
        View the full article
    • By NASA
      Explore This Section Exoplanets Home Exoplanets Overview Exoplanets Facts Types of Exoplanets Stars What is the Universe Search for Life The Big Questions Are We Alone? Can We Find Life? The Habitable Zone Why We Search Target Star Catalog Discoveries Discoveries Dashboard How We Find and Characterize Missions People Exoplanet Catalog Immersive The Exoplaneteers Exoplanet Travel Bureau 5 Ways to Find a Planet Strange New Worlds Universe of Monsters Galaxy of Horrors News Stories Blog Resources Get Involved Glossary Eyes on Exoplanets Exoplanet Watch More Multimedia ExEP Artist’s concept of a planet orbiting two brown dwarfs. The planet is in a polar orbit (red), perpendicular to the mutual orbit of the two brown dwarfs (blue). ESO/L. Calçada The Discovery
      A newly discovered planetary system, informally known as 2M1510, is among the strangest ever found. An apparent planet traces out an orbit that carries it far over the poles of two brown dwarfs. This pair of mysterious objects – too massive to be planets, not massive enough to be stars – also orbit each other. Yet a third brown dwarf orbits the other two at an extreme distance.
      Key Facts
      In a typical arrangement, as in our solar system, families of planets orbit their parent stars in more-or-less a flat plane – the orbital plane – that matches the star’s equator. The rotation of the star, too, aligns with this plane. Everyone is “coplanar:” flat, placid, stately.
      Not so for possible planet 2M1510 b (considered a “candidate planet” pending further measurements). If confirmed, the planet would be in a “polar orbit” around the two central brown dwarfs – in other words, its orbital plane would be perpendicular to the plane in which the two brown dwarfs orbit each other. Take two flat disks, merge them together at an angle in the shape of an X, and you have the essence of this orbital configuration.
      “Circumbinary” planets, those orbiting two stars at once, are rare enough. A circumbinary orbiting at a 90-degree tilt was, until now, unheard of. But new measurements of this system, using the ESO (European Southern Observatory) Very Large Telescope in Chile, appear to reveal what scientists previously only imagined. 
      Details
      The method by which the study’s science team teased out the planet’s vertiginous existence is itself a bit of a wild ride. The candidate planet cannot be detected the way most exoplanets – planets around other stars – are found today: the “transit” method, a kind of mini-eclipse, a tiny dip in starlight when the planet crosses the face of its star.
      Instead they used the next most prolific method, “radial velocity” measurements. Orbiting planets cause their stars to rock back and forth ever so slightly, as the planets’ gravity pulls the stars one way and another; that pull causes subtle, but measurable, shifts in the star’s light spectrum. Add one more twist to the detection in this case: the push-me-pull-you effect of the planet on the two brown dwarfs’ orbit around each other. The path of the brown dwarf pair’s 21-day mutual orbit is being subtly altered in a way that can only be explained, the study’s authors conclude, by a polar-orbiting planet.
      Fun Facts
      Only 16 circumbinary planets – out of more than 5,800 confirmed exoplanets – have been found by scientists so far, most by the transit method. Twelve of those were found using NASA’s now-retired Kepler Space Telescope, the mission that takes the prize for the most transit detections (nearly 2,800). Scientists have observed a small number of debris disks and “protoplanetary” disks in polar orbits, and suspected that polar-orbiting planets might be out there as well. They seem at last to have turned one up.
      The Discoverers
      An international science team led by Thomas A. Baycroft, a Ph.D. student in astronomy and astrophysics at the University of Birmingham, U.K., published a paper describing their discovery in the journal “Science Advances” in April 2025. The planet was entered into NASA’s Exoplanet Archive on May 1, 2025. The system’s full name is 2MASS J15104786-281874 (2M1510 for short).
      Share








      Details
      Last Updated May 21, 2025 Related Terms
      Exoplanets Astrophysics Binary Stars Brown Dwarfs Science & Research The Universe Keep Exploring Discover More Topics From NASA
      Search for Life



      Stars



      Galaxies



      Black Holes


      View the full article
  • Check out these Videos

×
×
  • Create New...