Jump to content

What’s Up: January 2025 Skywatching Tips from NASA


Recommended Posts

  • Publishers
Posted

Four Planets in One View!

Each evening this month, enjoy a sweeping view of four bright planets at once. Also look for a close approach of Venus and Saturn, Mars occulted by the Moon, and meteors!

Skywatching Highlights

January 3 – Quadrantid meteor shower peaks: This is a moderate shower, usually delivering 20 to 30 meteors per hour under clear, dark skies at its peak. No interference from the Moon makes this year’s peak a better bet for meteor watching.

January 13 – Moon Occults Mars: For skywatchers in the continental U.S. and Eastern Canada, the Moon will appear to pass in front of Mars this evening. Times vary by location, so check your favorite skywatching app for details.

January 17-18 – Venus and Saturn conjunction: Over a couple of weeks, the two planets come within just a couple of finger widths’ distance apart in the sky (about 2 degrees). They’re at their closest on the 17th and 18th. 

All month – Four planets Visible: In the first couple of hours after dark, you’ll find Venus and Saturn in the southwest, Jupiter high overhead, and Mars in the east. (Uranus and Neptune are there too, but a telescope is needed to see them.) Planets always appear a long a line on the sky to the “alignment” isn’t special. What’s less common is seeing four or five bright planets at once, which doesn’t happen every year. Is it a “planet parade”? This isn’t a technical term in astronomy, so call it what you wish!

All month – Mars at Opposition: The Red Planet is directly opposite the Sun from Earth and shines brightly all night. It’s in the east as night falls and in the southwest at dawn.

Transcript

What’s Up for January?

Cue the planet parade, Saturn and Venus cross paths, Mars expresses its opposition, and the outlook for the Quadrantid meteors.

In January, you’ll have the opportunity to take in four bright planets in a single, sweeping view.

A star chart for mid-January 2025 showing the evening sky looking south-southeast at 7 p.m. Planets from right to left, Venus, Saturn, Jupiter, and Mars are labeled, forming a rough line across the sky. Nearby bright stars include Aldebaran, Capella, Betelgeuse, Rigel, Sirius, Procyon, and Pollux. The horizon is marked with 'SE' for southeast and 'S' for south.
Sky chart showing the planetary lineup visible after dark in January 2025.
NASA/JPL-Caltech

All month after dark, you’ll find Venus and Saturn in the southwest for the first couple of hours, while Jupiter shines brightly high overhead, and Mars rises in the east. Uranus and Neptune are there too, technically, but they don’t appear as “bright planets.” These multi-planet viewing opportunities aren’t super rare, but they don’t happen every year, so it’s worth checking it out. 

Now, these events are sometimes called “alignments” of the planets, and while it’s true that they will appear more or less along a line across the sky, that’s what planets always do. That line is called the ecliptic, and it represents the plane of the solar system in which the planets orbit around the Sun. This is, incidentally, why we sometimes observe planets appearing to approach closely to each other on the sky, as we view them along a line while they careen around the cosmic racetrack.

A star chart for January 17, 2025, showing the evening sky looking southwest one hour after sunset. Venus and Saturn appear very close together, labeled prominently in the center. The star Fomalhaut is visible lower in the sky near the horizon. Cardinal directions 'S,' 'SW,' and 'W' mark the horizon.
Sky chart showing Venus and Saturn appearing quite close together on Jan. 17 and 18, 2025.
NASA/JPL-Caltech

This is exactly what we’ll be seeing from Venus and Saturn as they head for a super close approach in mid-January. After the beginning of the month, they quickly get closer and closer each evening, appearing at their most cozy on the 17th and 18th before going their separate ways. Remember, they’re really hundreds of millions of miles apart in space, so when you observe them, you’re staring clear across the solar system!  

Mars reaches “opposition” this month, which is when the planet lies directly on the opposite side of Earth from the Sun, forming a straight line. This is around the time when the planet is at its closest to Earth, making it appear at its biggest and brightest. For Mars, oppositions happen about every two years. This one won’t be the most spectacular ever, but it’s still closer than average, and provides a great opportunity to observe the nearby planet where NASA has five missions currently operating. 

And on the 13th, the full Moon cozies up to Mars, appearing super close to the Red Planet that evening. Across the U.S. and Eastern Canada, the Moon will appear to pass in front of Mars over a couple of hours, as the pair rise into the eastern sky. Mars also will be the lone planet in the sky on January mornings. You’ll find it hanging out in the west in morning twilight.

The Quadrantid meteors peak in the early morning hours on January 3rd. Interference from moonlight won’t be a problem, as the Moon is a mere crescent and sets early in the night. The way to see the most meteors is to observe after midnight from clear, dark skies away from bright city lights, and let your eyes adapt to the dark. The meteor rate will be highest as dawn approaches, and you’ll see more meteors from rural locations than in the suburbs. Now, this is a shower best seen from the Northern Hemisphere, and observers in the Northwest and Pacific region will likely have the best viewing this year.

Here are the phases of the Moon for January:

Graphic showing the phases of the Moon for January 2025. From left to right: First Quarter on January 6, Full Moon on January 13, Third Quarter on January 21, and New Moon on January 29. Each phase is depicted with a realistic lunar image against a black background.
The phases of the Moon for January 2025.
NASA/JPL-Caltech

Stay up to date on all of NASA’s missions exploring the solar system and beyond at science.nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By NASA
      5 Min Read NASA’s X-59 Moves Toward First Flight at Speed of Safety
      NASA’s X-59 quiet supersonic research aircraft is seen at dawn with firetrucks and safety personnel nearby during a hydrazine safety check at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. The operation highlights the extensive precautions built into the aircraft’s safety procedures for a system that serves as a critical safeguard, ensuring the engine can be restarted in flight as the X-59 prepares for its first flight. Credits: Lockheed Martin As NASA’s one-of-a-kind X-59 quiet supersonic research aircraft approaches first flight, its team is mapping every step from taxi and takeoff to cruising and landing – and their decision-making is guided by safety.
      First flight will be a lower-altitude loop at about 240 mph to check system integration, kicking off a phase of flight testing focused on verifying the aircraft’s airworthiness and safety. During subsequent test flights, the X-59 will go higher and faster, eventually exceeding the speed of sound. The aircraft is designed to fly supersonic while generating a quiet thump rather than a loud sonic boom.
      To help ensure that first flight – and every flight after that – will begin and end safely, engineers have layered protection into the aircraft.
      The X-59’s Flight Test Instrumentation System (FTIS) serves as one of its primary record keepers, collecting and transmitting audio, video, data from onboard sensors, and avionics information – all of which NASA will track across the life of the aircraft.
      “We record 60 different streams of data with over 20,000 parameters on board,” said Shedrick Bessent, NASA X-59 instrumentation engineer. “Before we even take off, it’s reassuring to know the system has already seen more than 200 days of work.”
      Through ground tests and system evaluations, the system has already generated more than 8,000 files over 237 days of recording. That record provides a detailed history that helps engineers verify the aircraft’s readiness for flight.
      Maintainers perform a hydrazine safety check on the agency’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, and is one of several safety features being validated ahead of the aircraft’s first flight.Credits: Lockheed Martin “There’s just so much new technology on this aircraft, and if a system like FTIS can offer a bit of relief by showing us what’s working – with reliability and consistency – that reduces stress and uncertainty,” Bessent said. “I think that helps the project just as much as it helps our team.”
      The aircraft also uses a digital fly-by-wire system that will keep the aircraft stable and limit unsafe maneuvers. First developed in the 1970s at NASA’s Armstrong Flight Research Center in Edwards, California, digital fly-by-wire replaced how aircraft were flown, moving away from traditional cables and pulleys to computerized flight controls and actuators.
      On the X-59, the pilot’s inputs – such as movement of the stick or throttle – are translated into electronic signals and decoded by a computer. Those signals are then sent through fiber-optic wires to the aircraft’s surfaces, like its wings and tail.
      Additionally, the aircraft uses multiple computers that back each other up and keep the system operating. If one fails, another takes over. The same goes for electrical and hydraulic systems, which also have independent backup systems to ensure the aircraft can fly safely.
      Onboard batteries back up the X-59’s hydraulic and electrical systems, with thermal batteries driving the electric pump that powers hydraulics. Backing up the engine is an emergency restart system that uses hydrazine, a highly reactive liquid fuel. In the unlikely event of a loss of power, the hydrazine system would restart the engine in flight. The system would help restore power so the pilot could stabilize or recover the aircraft.
      Maintainers perform a hydrazine safety check on NASA’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, which is one of several safety features being validated ahead of the aircraft’s first flight. Credits: Lockheed Martin Protective Measures
      Behind each of these systems is a team of engineers, technicians, safety and quality assurance experts, and others. The team includes a crew chief responsible for maintenance on the aircraft and ensuring the aircraft is ready for flight.
      “I try to always walk up and shake the crew chief’s hand,” said Nils Larson, NASA X-59 lead test pilot. “Because it’s not your airplane – it’s the crew chief’s airplane – and they’re trusting you with it. You’re just borrowing it for an hour or two, then bringing it back and handing it over.”
      Larson, set to serve as pilot for first flight, may only be borrowing the aircraft from the X-59’s crew chiefs – Matt Arnold from X-59 contractor Lockheed Martin and Juan Salazar from NASA – but plenty of the aircraft’s safety systems were designed specifically to protect the pilot in flight.
      The X-59’s life support system is designed to deliver oxygen through the pilot’s mask to compensate for the decreased atmospheric pressure at the aircraft’s cruising altitude of 55,000 feet – altitudes more than twice as high as that of a typical airliner. In order to withstand high-altitude flight, Larson will also wear a counter-pressure garment, or g-suit, similar to what fighter pilots wear.
      In the unlikely event it’s needed, the X-59 also features an ejection seat and canopy adapted from a U.S. Air Force T-38 trainer, which comes equipped with essentials like a first aid kit, radio, and water. Due to the design, build, and test rigor put into the X-59, the ejection seat is a safety measure.
      All these systems form a network of safety, adding confidence to the pilot and engineers as they approach to the next milestone – first flight.
      “There’s a lot of trust that goes into flying something new,” Larson said. “You’re trusting the engineers, the maintainers, the designers – everyone who has touched the aircraft. And if I’m not comfortable, I’m not getting in. But if they trust the aircraft, and they trust me in it, then I’m all in.”
      Share
      Details
      Last Updated Sep 12, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Ames Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations
      Article 20 minutes ago 3 min read NASA, Embry-Riddle Enact Agreement to Advance Research, Educational Opportunities
      Article 24 hours ago 4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care  
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers in the Verification and Validation Lab at NASA’s Ames Research Center in California’s Silicon Valley monitor a simulated drone’s flight path during a test of the FUSE demonstration.NASA/Brandon Torres Navarrete Through an ongoing collaboration, NASA and the Department of War are working to advance the future of modern drones to support long distance cargo transportation that could increase efficiency, reduce human workload, and enhance safety.  
      Researchers from NASA’s Ames Research Center in California’s Silicon Valley recently participated in a live flight demonstration showcasing how drones can successfully fly without their operators being able to see them, a concept known as beyond visual line of sight (BVLOS).  
      Cargo drones, a type of Unmanned Aerial Systems (UAS), carried various payloads more than 75 miles across North Dakota, between Grand Forks Air Force Base and Cavalier Space Force Station. This demonstration was conducted as part of the War Department’s UAS Logistics, Traffic, Research, and Autonomy (ULTRA) effort. 
      NASA’s UAS Service Supplier (USS) technology helped to demonstrate that cargo drones could operate safely even in complex, shared airspace. During the tests, flight data including location, altitude, and other critical data were transmitted live to the NASA system, ensuring full situational awareness throughout the demonstration. 
      Terrence Lewis and Sheryl Jurcak, members of the FUSE project team at NASA Ames, discuss the monitoring efforts of the FUSE demonstration at the Airspace Operations Lab. NASA/Brandon Torres Navarrete The collaboration between NASA and the Department of War is known as the Federal USS Synthesis Effort (FUSE). The demonstration allowed FUSE researchers to test real-time tracking, situational awareness, and other factors important to safely integrating of drone traffic management into U.S. national airspace. The FUSE work marks an important step towards routine, scalable autonomous cargo drone operations and broader use for future military logistics. 
      “NASA and the Department of War have a long and storied partnership, collaborating with one another to contribute to continued advancement of shared American ideals,” said Todd Ericson, senior advisor to the NASA administrator. “FUSE builds upon our interagency cooperation to contribute enhanced capabilities for drones flying beyond the visual line of sight. This mission is the next big step toward true autonomous flight and will yield valuable insights that we can leverage as both the commercial drone, cargo and urban air taxi industries continue to expand and innovate. As always, safety is of paramount importance at NASA, and we are working with our partners at the FAA and Department of Transportation to ensure we regulate this appropriately.” 
      Autonomous and semi-autonomous drones could potentially support a broad range of tasks for commercial, military, and private users. They could transport critical medical supplies to remote locations, monitor wildfires from above, allow customers to receive deliveries directly in their backyards. NASA is researching technology to further develop the infrastructure needed for these operations to take place safely and effectively, without disrupting the existing U.S. airspace. 
      “This system is crucial for enabling safe, routine BVLOS operations,” said Terrence Lewis, FUSE project manager at NASA Ames. “It ensures all stakeholders can see and respond to drone activity, which provides the operator with greater situational awareness.” 
      NASA Ames is collaborating on the FUSE project with the War Department’s Office of the Undersecretary of War for Acquisition and Sustainment. The NASA FUSE effort is also collaborating with ULTRA, a multi-entity partnership including the Office of the Secretary of War, the County of Grand Forks, the Northern Plains UAS Test Site, the Grand Sky Development, the Air Force Research Laboratory, and several other commercial partners, aiming to bolster capabilities within the National Airspace System. 
      Share
      Details
      Last Updated Sep 12, 2025 Related Terms
      Ames Research Center Aeronautics Aeronautics Research General Explore More
      5 min read NASA’s X-59 Moves Toward First Flight at Speed of Safety
      Article 5 minutes ago 1 min read Drag Prediction Workshop Series
      Article 8 hours ago 2 min read NASA Ames Science Directorate: Stars of the Month – September 2025
      Article 23 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Week in images: 08-12 September 2025
      Discover our week through the lens
      View the full article
    • By NASA
      NSTGRO Homepage
      Andrew Arends
      University of California, Davis
      Astronaut-Powered Laundry Machine
      Allan Attia
      Stanford University
      Computational Modeling of Lithium Magnetoplasmadynamic Thruster for Nuclear Electric Propulsion
      Michael Auth
      University of California, Santa Barbara
      Non-Contact, Real-Time Diagnostics of Battery Aging in 18650 Cells During the Lunar Night Using Acoustic Spectroscopy
      Nicholas Brennan
      Cornell University
      Spin Wave-Based Neuromorphic Coprocessor for Advanced AI Applications
      John Carter
      Purdue University
      Spectroscopic Measurements and Kinetic Modeling of Non-Boltzmann CN for Entry Systems Modeling
      Thomas Clark
      University of Colorado, Boulder
      Data-Driven Representations of Trajectories in Cislunar Space
      Nicholas Cmkovich
      University of Wisconsin-Madison
      Development of Radiation Tolerant Additively Manufactured Refractory Compositionally Complex Alloys
      Kara Hardy
      Michigan Technological University
      Design and Optimization of Cuttlebone-Inspired Cellular Materials Using Turing Systems
      Tyler Heggenes
      Utah State University
      Mitigating Spacecraft Charging Issues Through High-Precision, Temperature-Dependent Measurements of Dynamic Radiation Induced Conductivity
      Joseph Hesse-Withbroe
      University of Colorado, Boulder
      Decreasing Astronaut Radiation Doses with Magnetic Shields
      Niya Hope-Glenn
      Massachusetts Institute of Technology
      Investigating the Selectivity of CO2 Hydrogenation to Ethylene in a Plasma Reactor for Mars ISRU
      Adrianna Hudyma
      University of Minnesota
      Biorthogonal Translation System for Production of Pharmaceuticals During Space Missions
      Tushaar Jain
      Carnegie Mellon University
      Towards On-Demand Planetary Landing Through On-Board Autonomous Mapping and Cross-Modality Map Relative Localization
      Devin Johnson
      Purdue University
      Numerical and Experimental Methodology to Optimize Propellant Injection, Mixing, and Response in Rotating Detonation Engines
      Jack Joshi
      University of Texas at Austin
      State Representations for Measurement Fusion and Uncertainty Propagation in Cislunar Regime
      John Knoll
      William Marsh Rice University
      Dexterous Manipulation via Vision-Intent-Action Models
      Joseph Ligresti
      Purdue University
      Effects of Vacuum Conditions on FORP Reactivity and Long-Term Viability of MON-25/MMH Thrusters
      Alexander Madison
      University of Central Florida
      Hybrid Microwave Sintering of Lunar Regolith with 2.45GHz and 18-28GHz
      Aurelia Moriyama-Gurish
      Yale University
      Investigating Fundamental High Strain Rate Deformation Mechanisms to Bridge the Experiment-Computation Gap and Local Thermal Shock Response in C103
      Sophia Nowak
      University of Wisconsin-Madison
      Pulsed Laser System for Calibration of High Resolution X-ray Microcalorimeters
      Jacob Ortega
      Missouri University of Science and Technology
      Forging the Future Lunar Settlement with In-Situ Aluminum Extraction
      John Riley O’Toole
      University of Michigan
      Laser-Based Measurements of Electron Properties in Hall Effect Thrusters with Non-Conventional Propellants Enabling for Cis-Lunar, Mars, and Deep Space Missions
      Cort Reinarz
      Texas A&M University
      Utilizing Biometrics in Closed-Loop Compression Garment Systems as a Countermeasure for Orthostatic Intolerance
      Erica Sawczynec
      University of Texas at Austin
      A Monolithic Cross-Dispersed Grism for Near-Infrared Spectroscopy
      Ingrid Shan
      California Institute of Technology
      Micro-Architected Metallic Lattices for Lunar Dust Mitigation
      Pascal Spino
      Massachusetts Institute of Technology
      Centimeter-Scale Robots for Accessing Europa’s Benthic Zone
      Benjamin Stern
      Northwestern University, Chicago
      A Near-Field Thermoreflectance Approach for Nanoscale Thermal Mapping on Nanostructured Sige
      Titus Szobody
      William Marsh Rice University
      Leveraging Polymeric Photochemistry in Ionic Liquid-Based Mirror Synthesis for Space Telescope Optics
      Seneca Velling
      California Institute of Technology
      Constraining Weathering Kinetics Under Experimentally Simulated Venus Conditions
      Zhuochen Wang
      Georgia Institute of Technology
      Optimal Covariance Steering on Lie Groups for Precision Powered Descent
      Stanley Wang
      Stanford University
      Compact Robots with Long Reach for Space Exploration and Maintenance Tasks
      Thomas Westenhofer
      University of California, Irvine
      Kinetic Modeling of Carbon Mass Loss in Nuclear Thermal Propulsion
      Andrew Witty
      Purdue University
      Scalable Nanoporous Paints with High Solar Reflectance and Durability in Space Environments
      Jonathan Wrieden
      University of Maryland, College Park
      A Stochastic Model for Predicting Charged Orbital Debris Probability Densities by Utilizing Earth’s Electromagnetic Field to Guide Active Debris Remediation Efforts
      Jasen Zion
      California Institute of Technology
      Large-Format, Fast SNSPD Cameras Benchmarked with Neutral Atom Arrays
      Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Space Technology Research Grants
      NASA Space Technology Graduate Research Opportunities (NSTGRO)
      Technology
      Share
      Details
      Last Updated Sep 12, 2025 EditorLoura Hall Related Terms
      Space Technology Research Grants Space Technology Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...