Jump to content

NASA’s Parker Solar Probe Makes History With Closest Pass to Sun


Recommended Posts

  • Publishers
Posted
5 Min Read

NASA’s Parker Solar Probe Makes History With Closest Pass to Sun

An illustration showing the Parker Solar Probe spacecraft — a flat shield facing the Sun, with instruments and antennae on the other side, near the Sun, which has solar material ejecting off of it.
An artist’s concept showing Parker Solar Probe.
Credits:
NASA/APL

Operations teams have confirmed NASA’s mission to “touch” the Sun survived its record-breaking closest approach to the solar surface on Dec. 24, 2024.

Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, NASA’s Parker Solar Probe hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved. A beacon tone received late on Dec. 26 confirmed the spacecraft had made it through the encounter safely and is operating normally.

This pass, the first of more to come at this distance, allows the spacecraft to conduct unrivaled scientific measurements with the potential to change our understanding of the Sun.

Flying this close to the Sun is a historic moment in humanity’s first mission to a star.

Nicky fox

Nicky fox

NASA Associate Administrator, Science Mission Directorate

“Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” said Nicky Fox, who leads the Science Mission Directorate at NASA Headquarters in Washington. “By studying the Sun up close, we can better understand its impacts throughout our solar system, including on the technology we use daily on Earth and in space, as well as learn about the workings of stars across the universe to aid in our search for habitable worlds beyond our home planet.”

NASA’s Parker Solar Probe survived its record-breaking closest approach to the solar surface on Dec. 24, 2024. Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, the spacecraft hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved.
Credits: NASA

This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14741.

Parker Solar Probe has spent the last six years setting up for this moment. Launched in 2018, the spacecraft used seven flybys of Venus to gravitationally direct it ever closer to the Sun. With its last Venus flyby on Nov. 6, 2024, the spacecraft reached its optimal orbit. This oval-shaped orbit brings the spacecraft an ideal distance from the Sun every three months — close enough to study our Sun’s mysterious processes but not too close to become overwhelmed by the Sun’s heat and damaging radiation. The spacecraft will remain in this orbit for the remainder of its primary mission.

“Parker Solar Probe is braving one of the most extreme environments in space and exceeding all expectations,” said Nour Rawafi, the project scientist for Parker Solar Probe at the Johns Hopkins Applied Physics Laboratory (APL), which designed, built, and operates the spacecraft from its campus in Laurel, Maryland. “This mission is ushering a new golden era of space exploration, bringing us closer than ever to unlocking the Sun’s deepest and most enduring mysteries.”

Close to the Sun, the spacecraft relies on a carbon foam shield to protect it from the extreme heat in the upper solar atmosphere called the corona, which can exceed 1 million degrees Fahrenheit. The shield was designed to reach temperatures of 2,600 degrees Fahrenheit — hot enough to melt steel — while keeping the instruments behind it shaded at a comfortable room temperature. In the hot but low-density corona, the spacecraft’s shield is expected to warm to 1,800 degrees Fahrenheit.

A red infographic shows a spacecraft at key distances on its journey through the Sun’s atmosphere. A dot showing the location of the first passage into the corona on Apr. 2021 is shown at 8.13 million miles from the Sun and another at 3.83 million miles shows the closest final approach on Dec. 2024. A separate inset diagram at the bottom shows the locations of key discoveries with the Earth at one end 93 million miles away from the Sun at the other end. Two dots showing the discovery of switchbacks in the solar wind in 2019 (14.7 million miles from the Sun) and the discovery of a switchback origin in 2021 (8.12 million miles from the Sun) are shown.
The spacecraft’s record close distance of 3.8 million miles may sound far, but on cosmic scales it’s incredibly close. If the solar system was scaled down with the distance between the Sun and Earth the length of a football field, Parker Solar Probe would be just four yards from the end zone — close enough to pass within the tenuous outer atmosphere of the Sun known as the corona.
NASA/APL

“It’s monumental to be able to get a spacecraft this close to the Sun,” said John Wirzburger, the Parker Solar Probe mission systems engineer at APL. “This is a challenge the space science community has wanted to tackle since 1958 and had spent decades advancing the technology to make it possible.”

By flying through the solar corona, Parker Solar Probe can take measurements that help scientists better understand how the region gets so hot, trace the origin of the solar wind (a constant flow of material escaping the Sun), and discover how energetic particles are accelerated to half the speed of light.

“The data is so important for the science community because it gives us another vantage point,” said Kelly Korreck, a program scientist at NASA Headquarters and heliophysicist who worked on one of the mission’s instruments. “By getting firsthand accounts of what’s happening in the solar atmosphere, Parker Solar Probe has revolutionized our understanding of the Sun.”

Previous passes have already aided scientists’ understanding of the Sun. When the spacecraft first passed into the solar atmosphere in 2021, it found the outer boundary of the corona is wrinkled with spikes and valleys, contrary to what was expected. Parker Solar Probe also pinpointed the origin of important zig-zag-shaped structures in the solar wind, called switchbacks, at the visible surface of the Sun — the photosphere.

Since that initial pass into the Sun, the spacecraft has been spending more time in the corona, where most of the critical physical processes occur.

Illustration of the Parker Solar Probe near the Sun, showing a glowing, fiery orange and yellow solar surface with a grid-like texture representing the Sun's outer atmosphere. The spacecraft appears small, glowing white, and is positioned near the upper right corner, surrounded by the intense solar environment.
This conceptual image shows Parker Solar Probe about to enter the solar corona.
NASA/Johns Hopkins APL/Ben Smith

“We now understand the solar wind and its acceleration away from the Sun,” said Adam Szabo, the Parker Solar Probe mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This close approach will give us more data to understand how it’s accelerated closer in.”

Parker Solar Probe has also made discoveries across the inner solar system. Observations showed how giant solar explosions called coronal mass ejections vacuum up dust as they sweep across the solar system, and other observations revealed unexpected findings about solar energetic particles. Flybys of Venus have documented the planet’s natural radio emissions from its atmosphere, as well as the first complete image of its orbital dust ring.

So far, the spacecraft has only transmitted that it’s safe, but soon it will be in a location that will allow it to downlink the data it collected on this latest solar pass.

The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been.

Joe Westlake

Joe Westlake

Heliophysics Division Director, NASA Headquarters

“The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been,” said Joe Westlake, the director of the Heliophysics Division at NASA Headquarters. “It’s an amazing accomplishment.”

The spacecraft’s next planned close solar passes come on March 22, 2025, and June 19, 2025.

By Mara Johnson-Groh
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact: Sarah Frazier

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      While auroras are a beautiful sight on Earth, the solar activity that causes them can wreak havoc with space-based infrastructure like satellites. Using artificial intelligence to predict these disruptive solar events was a focus of KX’s work with FDL.Credit: Sebastian Saarloos In the summer of 2024, people across North America were amazed when auroras lit up the night sky across their hometowns, but the same solar activity that makes auroras can cause disruptions to satellites that are essential to systems on Earth. The solution to predicting these solar events and warning satellite operators may come through artificial intelligence. 

      The Frontier Development Lab of Mountain View, California, is an ongoing partnership between NASA and commercial AI firms to apply advanced machine learning to problems that matter to the agency and beyond. Since 2016, the Frontier Development Lab has applied AI on behalf of NASA in planetary defense, Heliophysics, Earth science, medicine, and lunar exploration.

      Through a collaboration with a company called KX Systems, the Frontier Development Lab looked to use proven software in an innovative new way. The company’s flagship data analytics software, called kdb+, is typically used in the financial industry to keep track of rapid shifts in market trends, but the company was exploring how it could be used in space. 

      Between 2017 and 2019, KX Systems participated in the Frontier Development Lab partnership through NASA’s Ames Research Center in Silicon Valley, California. Working with NASA scientists, KX applied the capabilities of kdb+ to searching for exoplanets and predicting space weather, areas which could be improved with AI models. One question the Frontier Development Lab worked to answer was whether kdb+ could forecast the kind of space weather that creates the auroras to predict when GPS satellites might experience signal interruption due to the Sun.

      By importing several datasets monitoring the ionosphere, solar activity, and Earth’s magnetic field, then applying machine learning algorithms to them, the Frontier Development Lab researchers were able to predict disruptive events up to 24 hours in advance. 

      While this was a scientific application of AI, KX Systems says some of this development work has made it back into its commercial offerings, as there are similarities between AI models developed to find patterns in satellite signal losses and ones that predict maintenance needs for industrial manufacturing equipment.

      A division of FD Technologies plc., KX Systems is a technology company that offers database management and analytics software for customers that need to make decisions quickly. While KX started in 1993, its AI-driven business has grown considerably, and the company credits work done with NASA for accelerating some of its capabilities.

      From protecting valuable satellites to keeping manufacturing lines moving at top performance, pairing NASA’s expertise with commercial ingenuity is a combination for success.  
      Read More Share
      Details
      Last Updated Sep 09, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      3 min read NASA-Developed Printable Metal Can Take the Heat
      Article 4 weeks ago 5 min read NASA Releases Opportunity to Boost Commercial Space Tech Development
      Article 1 month ago 3 min read NASA-Derived Textiles are Touring France by Bike
      Article 2 months ago Keep Exploring Discover Related Topics
      Missions
      Technology Transfer and Spinoffs News
      Auroras
      Auroras, often called the northern lights (aurora borealis) or southern lights (aurora australis), are colorful, dynamic, and often visually delicate…
      Solar System
      View the full article
    • By Amazing Space
      LIVE NOW: CLOSE UP VIEWS OF THE SUN 8th September
    • By NASA
      6 Min Read Upcoming Launch to Boost NASA’s Study of Sun’s Influence Across Space
      Soon, there will be three new ways to study the Sun’s influence across the solar system with the launch of a trio of NASA and National Oceanic and Atmospheric Administration (NOAA) spacecraft. Expected to launch no earlier than Tuesday, Sept. 23, the missions include NASA’s IMAP (Interstellar Mapping and Acceleration Probe), NASA’s Carruthers Geocorona Observatory, and NOAA’s SWFO-L1 (Space Weather Follow On-Lagrange 1) spacecraft. 
      The three missions will launch together aboard a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida. From there, the spacecraft will travel together to their destination at the first Earth-Sun Lagrange point (L1), around one million miles from Earth toward the Sun.
      The missions will each focus on different effects of the solar wind — the continuous stream of particles emitted by the Sun — and space weather — the changing conditions in space driven by the Sun — from their origins at the Sun to their farthest reaches billions of miles away at the edge of our solar system. Research and observations from the missions will help us better understand the Sun’s influence on Earth’s habitability, map our home in space, and protect satellites and voyaging astronauts and airline crews from space weather impacts. 
      The IMAP and Carruthers missions add to NASA’s heliophysics fleet of spacecraft. Together, NASA’s heliophysics missions study a vast, interconnected system from the Sun to the space surrounding Earth and other planets to the farthest limits of the Sun’s constantly flowing streams of solar wind. The SWFO-L1 mission, funded and operated by NOAA, will be the agency’s first satellite designed specifically for and fully dedicated to continuous, operational space weather observations.
      Mapping our home in space: IMAP
      The IMAP mission will study the heliosphere, our home in space.
      NASA/Princeton University/Patrick McPike As a modern-day celestial cartographer, IMAP will investigate two of the most important overarching issues in heliophysics: the interaction of the solar wind at its boundary with interstellar space and the energization of charged particles from the Sun.
      The IMAP mission will principally study the boundary of our heliosphere — a huge bubble created by the solar wind that encapsulates our solar system — and study how the heliosphere interacts with the local galactic neighborhood beyond. The heliosphere protects the solar system from dangerous high-energy particles called galactic cosmic rays. Mapping the heliosphere’s boundaries helps scientists understand our home in space and how it came to be habitable. 
      “IMAP will revolutionize our understanding of the outer heliosphere,” said David McComas, IMAP mission principal investigator at Princeton University in New Jersey. “It will give us a very fine picture of what’s going on out there by making measurements that are 30 times more sensitive and at higher resolution than ever before.”
      The IMAP mission will also explore and chart the vast range of particles in interplanetary space. The spacecraft will provide near real-time observations of the solar wind and energetic particles, which can produce hazardous conditions not only in the space environment near Earth, but also on the ground. The mission’s data will help model and improve prediction capabilities of the impacts of space weather ranging from power-line disruptions to loss of satellites. 
      Imaging Earth’s exosphere: Carruthers Geocorona Observatory
      An illustration shows the Carruthers Geocorona Observatory spacecraft. NASA/BAE Systems Space & Mission Systems The Carruthers Geocorona Observatory, a small satellite, will launch with IMAP as a rideshare. The mission was named after Dr. George Carruthers, creator of the Moon-based telescope that captured the first images of Earth’s exosphere, the outermost layer of our planet’s atmosphere. 
      The Carruthers mission will build upon Dr. Carruthers’ legacy by charting changes in Earth’s exosphere. The mission’s vantage point at L1 offers a complete view of the exosphere not visible from the Moon’s relatively close distance to Earth. From there, it will address fundamental questions about the nature of the region, such as its shape, size, density, and how it changes over time.
      The exosphere plays an important role in Earth’s response to space weather, which can impact our technology, from satellites in orbit to communications signals in the upper atmosphere or power lines on the ground. During space weather storms, the exosphere mediates the energy absorption and release throughout the near-Earth space environment, influencing strength of space weather disturbances. Carruthers will help us better understand the fundamental physics of our exosphere and improve our ability to predict the impacts of the Sun’s activity.
      “We’ll be able to create movies of how this atmospheric layer responds when a solar storm hits, and watch it change with the seasons over time,” said Lara Waldrop, the principal investigator for the Carruthers Geocorona Observatory at the University of Illinois at Urbana-Champaign. 
      New space weather station: SWFO-L1
      SWFO-L1 will provide real-time observations of the Sun’s corona and solar wind to help forecast the resulting space weather.
      NOAA/BAE Systems Space & Mission Systems Distinct from NASA’s research satellites, SWFO-L1 will be an operational satellite, designed to observe solar activity and the solar wind in real time to provide critical data in NOAA’s mission to protect the nation from environmental hazards. SWFO-L1 will serve as an early-warning beacon for potentially damaging space weather events that could impact our technology on Earth. SWFO-L1 will observe the Sun’s outer atmosphere for large eruptions, called coronal mass ejections, and measure the solar wind upstream from Earth with a state-of-the-art suite of instruments and processing system.
      This mission is the first of a new generation of NOAA space weather observatories dedicated to 24/7 operations, working to avoid gaps in continuity. 
      “SWFO-L1 will be an amazing deep-space mission for NOAA,” said Dimitrios Vassiliadis, SWFO program scientist at NOAA. “Thanks to its advantageous location at L1, it will continuously monitor the solar atmosphere while measuring the solar wind and its interplanetary magnetic fields well before it impacts Earth — and transmit these data in record time.”
      With SWFO-L1’s enhanced performance, unobstructed views, and minimal delay between observations and data return, NOAA’s Space Weather Prediction Center forecasters will give operators improved lead time required to take precautionary actions that protect vital infrastructure, economic interests, and national security on Earth and in space.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 04, 2025 Related Terms
      Carruthers Geocorona Observatory (GLIDE) Heliophysics Heliosphere IMAP (Interstellar Mapping and Acceleration Probe) NOAA (National Oceanic and Atmospheric Administration) Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      3 min read Juno Detected the Final Missing Auroral Signature from Jupiter’s Four Largest Moons


      Article


      2 days ago
      6 min read NASA, IBM’s ‘Hot’ New AI Model Unlocks Secrets of Sun


      Article


      2 weeks ago
      3 min read Sun at the Center: Teacher Ambassadors Bring Heliophysics to Classrooms Nationwide


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      The European Space Agency-led Solar Orbiter mission has split the flood of energetic particles flung out into space from the Sun into two groups, tracing each back to a different kind of outburst from our star.
      View the full article
    • By NASA
      NASA’s IMAP (Interstellar Mapping and Acceleration Probe) mission will map the boundaries of the heliosphere, the bubble created by the solar wind that protects our solar system from cosmic radiation. Credit: NASA/Princeton/Patrick McPike NASA will hold a media teleconference at 12 p.m. EDT on Thursday, Sept. 4, to discuss the agency’s upcoming Sun and space weather missions, IMAP (Interstellar Mapping and Acceleration Probe) and Carruthers Geocorona Observatory. The two missions are targeting launch on the same rocket no earlier than Tuesday, Sept. 23.
      The IMAP mission will map the boundaries of our heliosphere, the vast bubble created by the Sun’s wind that encapsulates our entire solar system. As a modern-day celestial cartographer, IMAP will explore how the heliosphere interacts with interstellar space, as well as chart the range of particles that fill the space between the planets. The IMAP mission also will support near real-time observations of the solar wind and energetic particles. These energetic particles can produce hazardous space weather that can impact spacecraft and other NASA hardware as the agency explores deeper into space, including at the Moon under the Artemis campaign.
      NASA’s Carruthers Geocorona Observatory will image the ultraviolet glow of Earth’s exosphere, the outermost region of our planet’s atmosphere. This data will help scientists understand how space weather from the Sun shapes the exosphere and ultimately impacts our planet. The first observation of this glow – called the geocorona – was captured during Apollo 16, when a telescope designed and built by George Carruthers was deployed on the Moon.
      Audio of the teleconference will stream live on the agency’s website at:
      https://www.nasa.gov/live
      Participants include:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Teresa Nieves-Chinchilla, director, Moon to Mars Space Weather Analysis Office, NASA’s Goddard Space Flight Center in Greenbelt, Maryland David J. McComas, IMAP principal investigator, Princeton University Lara Waldrop, Carruthers Geocorona Observatory principal investigator, University of Illinois Urbana-Champaign To participate in the media teleconference, media must RSVP no later than 11 a.m. on Sept. 4 to Sarah Frazier at: sarah.frazier@nasa.gov. NASA’s media accreditation policy is available online.
      The IMAP and Carruthers Geocorona Observatory missions will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Also launching on this flight will be the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On – Lagrange 1 (SWFO-L1), which will monitor solar wind disturbances and detect and track coronal mass ejections before they reach Earth.
      David McComas, professor, Princeton University, leads the IMAP mission with an international team of 27 partner institutions. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, built the spacecraft and will operate the mission. NASA’s IMAP is the fifth mission in NASA’s Solar Terrestrial Probes Program portfolio.
      The Carruthers Geocorona Observatory mission is led by Lara Waldrop from the University of Illinois Urbana-Champaign. Mission implementation is led by the Space Sciences Laboratory at University of California, Berkeley, which also designed and built the two ultraviolet imagers. BAE Systems designed and built the Carruthers spacecraft.
      The Solar Terrestrial Probes Program Office, part of the Explorers and Heliophysics Project Division at NASA Goddard, manages the IMAP and Carruthers Geocorona Observatory missions for NASA’s Science Mission Directorate.
      NASA’s Launch Services Program, based at NASA Kennedy, manages the launch service for the mission.
      To learn more about IMAP, please visit:
      https://www.nasa.gov/imap
      -end-
      Abbey Interrante / Karen Fox
      Headquarters, Washington
      301-201-0124 / 202-358-1600
      abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Share
      Details
      Last Updated Aug 28, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Heliophysics Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics Division Heliosphere IMAP (Interstellar Mapping and Acceleration Probe) Kennedy Space Center Launch Services Program Science Mission Directorate Solar Terrestrial Probes Program View the full article
  • Check out these Videos

×
×
  • Create New...