Members Can Post Anonymously On This Site
NASA Ames Astrogram – December 2024
-
Similar Topics
-
By NASA
The SpaceX Dragon spacecraft carrying the Axiom Mission 3 crew is pictured approaching the International Space Station on Jan. 20, 2024.Credit: NASA NASA, Axiom Space, and SpaceX are targeting 2:31 a.m. EDT, Wednesday, June 25, for launch of the fourth private astronaut mission to the International Space Station, Axiom Mission 4.
The mission will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The crew will travel to the orbiting laboratory on a new SpaceX Dragon spacecraft after launching on the company’s Falcon 9 rocket. The targeted docking time is approximately 7 a.m. Thursday, June 26.
This launch opportunity comes after NASA and Roscosmos officials discussed the status of the recent repair work in the transfer tunnel at the aft (back) most segment of the orbital laboratory’s Zvezda service module. Based on the evaluations, NASA and Roscosmos agreed to further lower the pressure in the transfer tunnel to 100 millimeters of mercury, and teams will continue to evaluate going forward. Safety remains a top priority for NASA and Roscosmos.
“NASA and Roscosmos have a long history of cooperation and collaboration on the International Space Station. This professional working relationship has allowed the agencies to arrive at a shared technical approach and now Axiom Mission 4 launch and docking will proceed,” said acting NASA Administrator Janet Petro. “We look forward to the launch with Axiom Space and SpaceX for this commercial international mission.”
For this mission, NASA is responsible for integrated operations, which begins during the spacecraft’s approach to the space station, continues during the crew’s stay aboard the orbiting laboratory conducting science, education, and commercial activities, and concludes once the spacecraft departs the station.
Live coverage of launch and arrival activities will stream on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO (Indian Space Research Organisation) astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary.
Once docked, the private astronauts plan to spend about two weeks aboard the orbiting laboratory, conducting a mission comprised of science, outreach, and commercial activities.
As part of a collaboration between NASA and ISRO, Axiom Mission 4 delivers on a commitment highlighted by President Donald Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies are participating in five joint science investigations and two in-orbit STEM (science, technology, engineering, and mathematics) demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
The private mission also carries the first astronauts from Poland and Hungary to stay aboard the International Space Station.
NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
Wednesday, June 25
12:30 a.m. – Axiom Space and SpaceX launch coverage begins.
1:40 a.m. – NASA joins the launch coverage on NASA+.
2:31 a.m. – Launch
NASA will end coverage following orbital insertion, which is approximately 15 minutes after launch. As it is a commercial launch, NASA will not provide a clean launch feed on its channels.
Thursday, June 26
5 a.m. – Arrival coverage begins on NASA+, Axiom Space, and SpaceX channels.
7 a.m. – Targeted docking to the space-facing port of the station’s Harmony module.
Arrival coverage will continue through hatch opening and welcome remarks.
All times are estimates and could be adjusted based on real-time operations after launch. Follow the space station blog for the most up-to-date operations information.
The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
Learn more about NASA’s commercial space strategy at:
https://www.nasa.gov/commercial-space
-end-
Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov
Anna Schneider
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov
Share
Details
Last Updated Jun 24, 2025 LocationNASA Headquarters Related Terms
Humans in Space Commercial Crew Commercial Space Commercial Space Programs International Space Station (ISS) ISS Research Johnson Space Center View the full article
-
By NASA
NASA astronaut Zena Cardman inspects her spacesuit’s wrist mirror at the NASA Johnson Space Center photo studio on March 22, 2024.NASA/Josh Valcarcel NASA astronaut Zena Cardman [link to her bio] inspects her spacesuit’s wrist mirror in this portrait taken at NASA’s Johnson Space Center in Houston on March 22, 2024. Cardman will launch to the International Space Station as part of NASA’s SpaceX Crew-11 mission. This will be her first spaceflight.
Cardman was selected by NASA as a member of the 2017 “Turtles” Astronaut Class. The Virginia native holds a Bachelor’s of Science in Biology and a Master’s of Science in Marine Sciences from the University of North Carolina, Chapel Hill. Her research focused primarily on geobiology and geochemical cycling in subsurface environments, from caves to deep sea sediments. Cardman’s experience includes multiple Antarctic expeditions. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning.
This photo was one of the winners of NASA’s 2024 Photos of the Year.
View the full article
-
By NASA
Ozone high in the stratosphere protects us from the Sun’s ultraviolet light. But ozone near the ground is a pollutant that harms people and plants. The San Joaquin Valley has some of the most polluted air in the country, and NASA scientists with the new Ozone Where We Live (OWWL) project are working to measure ozone and other pollutants there. They need your help!
Do you live or work in Bakersfield, CA? Sign up to host an ozone sensor! It’s like a big lunch box that you place in your yard, but it’s not packed with tuna and crackers. It’s filled with sensors that measure temperature and humidity and sniff out dangerous gases like methane, carbon monoxide, carbon dioxide, and of course, ozone.
Can you fly a plane? Going to the San Joaquin Valley? Sign up to take an ozone sensor on your next flight! You can help measure ozone levels in layers of the atmosphere that are hard for satellites to investigate. Scientists will combine the data you take with data from NASA’s TEMPO satellite to improve air quality models and measurements within the region. Find out more here or email: Emma.l.yates@nasa.gov
Join the Ozone Where We Live (OWWL) project and help NASA scientists protect the people of the San Joaquin Valley! Credit: Emma Yates Share
Details
Last Updated Jun 24, 2025 Related Terms
Citizen Science Earth Science Division Tropospheric Emissions: Monitoring of Pollution (TEMPO) Explore More
4 min read c-FIRST Team Sets Sights on Future Fire-observing Satellite Constellations
Article
3 weeks ago
2 min read Summer Students Scan the Radio Skies with SunRISE
Article
4 weeks ago
2 min read Space Cloud Watch Needs Your Photos of Night-Shining Clouds
Article
1 month ago
View the full article
-
By NASA
NASA/Kevin O’Brien Demonstration Motor-1 (DM-1) is the first full-scale ground test of the evolved five-segment solid rocket motor of NASA’s SLS (Space Launch System) rocket. The event will take place in Promontory, Utah, and will be used as an opportunity to test several upgrades made from the current solid rocket boosters. Each booster burns six tons of solid propellant every second and together generates almost eight million pounds of thrust.
News Media Contact
Jonathan Deal
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
jonathan.e.deal@nasa.gov
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Drag your mouse or move your phone to pan around within this 360-degree view to explore the boxwork patterns on Mars that NASA’s Curiosity is investigating for the first time. The rover captured the 291 images that make up this mosaic between May 15 and May 18.
Credit: NASA/JPL-Caltech/MSSS The rover recently drilled a sample from a new region with features that could reveal whether Mars’ subsurface once provided an environment suitable for life.
New images from NASA’s Curiosity Mars rover show the first close-up views of a region scientists had previously observed only from orbit. The images and data being collected are already raising new questions about how the Martian surface was changing billions of years ago. The Red Planet once had rivers, lakes, and possibly an ocean. Although scientists aren’t sure why, its water eventually dried up and the planet transformed into the chilly desert it is today.
By the time Curiosity’s current location formed, the long-lived lakes were gone in Gale Crater, the rover’s landing area, but water was still percolating under the surface. The rover found dramatic evidence of that groundwater when it encountered crisscrossing low ridges, some just a few inches tall, arranged in what geologists call a boxwork pattern. The bedrock below these ridges likely formed when groundwater trickling through the rock left behind minerals that accumulated in those cracks and fissures, hardening and becoming cementlike. Eons of sandblasting by Martian wind wore away the rock but not the minerals, revealing networks of resistant ridges within.
NASA’s Curiosity Mars rover captured this scene while looking out across a region filled with boxwork patterns, low ridges that scientists think could have been formed by groundwater billions of years ago.NASA/JPL-Caltech/MSSS The ridges Curiosity has seen so far look a bit like a crumbling curb. The boxwork patterns stretch across miles of a layer on Mount Sharp, a 3-mile-tall (5-kilometer-tall) mountain whose foothills the rover has been climbing since 2014. Intriguingly, boxwork patterns haven’t been spotted anywhere else on the mountain, either by Curiosity or orbiters passing overhead.
“A big mystery is why the ridges were hardened into these big patterns and why only here,” said Curiosity’s project scientist, Ashwin Vasavada of NASA’s Jet Propulsion Laboratory in Southern California. “As we drive on, we’ll be studying the ridges and mineral cements to make sure our idea of how they formed is on target.”
Important to the boxwork patterns’ history is the part of the mountain where they’re found. Mount Sharp consists of multiple layers, each of which formed during different eras of ancient Martian climate. Curiosity essentially “time travels” as it ascends from the oldest to youngest layers, searching for signs of water and environments that could have supported ancient microbial life.
The rover is currently exploring a layer with an abundance of salty minerals called magnesium sulfates, which form as water dries up. Their presence here suggests this layer emerged as the climate became drier. Remarkably, the boxwork patterns show that even in the midst of this drying, water was still present underground, creating changes seen today.
NASA’s Curiosity Mars rover viewed this low ridge, which looks a bit like a crumbling curb, on May 16. Scientists think the hardened edges of such ridges — part of the boxwork region the rover is exploring — may have been formed by ancient groundwater.NASA/JPL-Caltech/MSSS Scientists hope to gain more insight into why the boxwork patterns formed here, and Mars recently provided some unexpected clues. The bedrock between the boxwork ridges has a different composition than other layers of Mount Sharp. It also has lots of tiny fractures filled with white veins of calcium sulfate, another salty mineral left behind as groundwater trickles through rock cracks. Similar veins were plentiful on lower layers of the mountain, including one enriched with clays, but had not been spotted in the sulfate layer until now.
“That’s really surprising,” said Curiosity’s deputy project scientist, Abigail Fraeman of JPL. “These calcium sulfate veins used to be everywhere, but they more or less disappeared as we climbed higher up Mount Sharp. The team is excited to figure out why they’ve returned now.”
New Terrain, New Findings
On June 8, Curiosity set out to learn about the unique composition of the bedrock in this area, using the drill on the end of its robotic arm to snag a sample of a rock nicknamed “Altadena.” The rover then dropped the pulverized sample into instruments within its body for more detailed analysis.
Drilling additional samples from more distant boxwork patterns, where the mineral ridges are much larger, will help the mission make sense of what they find. The team will also search for organic molecules and other evidence of an ancient habitable environment preserved in the cemented ridges.
As Curiosity continues to explore, it will be leaving a new assortment of nicknames behind, as well. To keep track of features on the planet, the mission applies nicknames to each spot the rover studies, from hills it views with its cameras to specific calcium sulfate veins it zaps with its laser. (Official names, such as Aeolis Mons — otherwise known as Mount Sharp — are approved by the International Astronomical Union.)
The previous names were selected from local sites in Southern California, where JPL is based. The Altadena sample, for instance, bears the name of a community near JPL that was severely burned during January’s Eaton Canyon fire. Now on a new part of their Martian map, the team is selecting names from around Bolivia’s Salar de Uyuni, Earth’s largest salt flat. This exceptionally dry terrain crosses into Chile’s Atacama Desert, and astrobiologists study both the salt flat and the surrounding desert because of their similarity to Mars’ extreme dryness.
More About Curiosity
Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington as part of NASA’s Mars Exploration Program portfolio.
For more about Curiosity, visit:
science.nasa.gov/mission/msl-curiosity
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-080
Share
Details
Last Updated Jun 23, 2025 Related Terms
Curiosity (Rover) Jet Propulsion Laboratory Mars Mars Science Laboratory (MSL) Explore More
4 min read NASA Mars Orbiter Captures Volcano Peeking Above Morning Cloud Tops
Article 2 weeks ago 6 min read NASA’s Ready-to-Use Dataset Details Land Motion Across North America
Article 2 weeks ago 5 min read 3 Black Holes Caught Eating Massive Stars in NASA Data
Black holes are invisible to us unless they interact with something else. Some continuously eat…
Article 3 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.