Jump to content

Five Ways to Explore NASA’s Portfolio of Technologies with TechPort 4.0


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Have you ever wanted to find all your favorite NASA technology in one place? NASA stakeholders did, too! We listened to your feedback, brainstormed user-focused features, and created the most robust technology system to date.

NASA’s Space Technology Mission Directorate is excited to announce the release of TechPort version 4.0 – your gateway into our technology community. NASA tuned into feedback from the public, industry, academia, and our internal audiences to make significant updates to the TechPort system. From improvements in usability, customizability, and analysis views, users will now be able to search and explore NASA’s vast portfolio of technologies more easily than ever before.

Video introducing 4 new features of TechPort 4.0.
NASA

“When it comes to the ever-growing advancements in space technology, we need a system that encompasses a modernized look and feel coupled with a more intuitive interface,” said Alesyn Lowry, director for Strategic Planning & Integration for STMD at NASA Headquarters in Washington. “TechPort 4.0 offers just that. As the largest and most significant update to TechPort in the past five years, users will now be able to enjoy the most accessible, user-friendly, and all-encompassing version yet.” 

Check out the five features of TechPort 4.0 and how they can help you research NASA’s cutting-edge technology projects and partnerships: 

1. New and Improved Homepage 

Featuring a new look and feel, users are able to search NASA’s comprehensive system of vast technologies. Including over 18,000 current and historical NASA technologies, users will now have more access to knowledge about the agency’s technology development at the touch of their fingertips! The modernized look and feel lends itself to a more intuitive interface that upgrades technology search capabilities. 

2. Advanced Search 

One of the most exciting features of TechPort 4.0 is the new capability to search and filter on all fields associated with technologies. This advanced filtering feature will allow users to uncover the exact information they are seeking, creating a more accessible and swifter experience for users. 

3. New Grid View 

Expanding upon the previous view, TechPort 4.0 offers a new grid view that enables users to view even more project data all at once. This upgrade also allows a user to customize all of the fields visible in search results, tailor how the data is sorted, and filter on any visible field. This new view provides a familiar interface tailored to data analysis needs that require rapid review of multiple data facets simultaneously. 

Gridview of TechPort 4.0

4. NASA Technology Taxonomy Recommendation (T-Rex) 

NASA’s Technology Taxonomy provides a structure for technology classification spanning over 350 categories. The Taxonomy is featured in TechPort, and all technologies in the system align to at least one Taxonomy area, making it easy to view technologies of interest. Technologists from various fields, including academia and nonprofits, now have the opportunity to use the T-Rex tool to automatically classify their technology according to the NASA Taxonomy. Serving as a machine learning model, TechPort will offer more organization and an easier way for users to access relevant information. 

5. Funding Opportunities 

Now, users can get connected, too! If your TechPort research is inspiring you to think about solving an aerospace or technology challenge, TechPort 4.0 gives users easy access to relevant opportunities and information on how to apply. 

Launch into TechPort 4.0 to embark on your journey into our technology community. With the wide range of improvements in accessibility and customizability, explore NASA technologies like never before! 

Gabrielle Thaw

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Weird Ways to Observe the Moon
      Sun Funnels in action! Starting clockwise from the bottom left, a standalone Sun Funnel; attached to a small refractor to observe the transit of Mercury in 2019; attached to a large telescope in preparation for evening lunar observing; projection of the Moon on a funnel from a medium-size scope (5 inches). Night Sky Network International Observe the Moon Night is on October 4, 2025, this year– but you can observe the Moon whenever it’s up, day or night! While binoculars and telescopes certainly reveal incredible details of our neighbor’s surface, bringing out dark seas, bright craters, and numerous odd fissures and cracks, these tools are not the only way to observe details about our Moon. There are more ways to observe the Moon than you might expect, just using common household materials.
      Put on a pair of sunglasses, especially polarized sunglasses! You may think this is a joke, but the point of polarized sunglasses is to dramatically reduce glare, and so they allow your eyes to pick out some lunar details! Surprisingly, wearing sunglasses even helps during daytime observations of the Moon.
      One unlikely tool is the humble plastic bottle cap! John Goss from the Roanoke Valley Astronomical Society shared these directions on how to make your own bottle cap lunar viewer, which was suggested to him by Fred Schaaf many years ago as a way to also view the thin crescent of Venus when close to the Sun:
      “The full Moon is very bright, so much that details are overwhelmed by the glare. Here is an easy way to see more! Start by drilling a 1/16-inch (1.5 mm) diameter hole in a plastic soft drink bottle cap. Make sure it is an unobstructed, round hole.  Now look through the hole at the bright Moon. The image brightness will be much dimmer than normal – over 90% dimmer – reducing or eliminating any lunar glare. The image should also be much sharper because the bottle cap blocks light from entering the outer portion of your pupil, where imperfections of the eye’s curving optical path likely lie.” Many report seeing a startling amount of lunar detail!
      You can project the Moon! Have you heard of a “Sun Funnel”? It’s a way to safely view the Sun by projecting the image from an eyepiece to fabric stretched across a funnel mounted on top. It’s easy to make at home, too – directions are here: bit.ly/sunfunnel. Depending on your equipment, a Sun Funnel can view the Moon as well as the Sun– a full Moon gives off more than enough light to project from even relatively small telescopes. Large telescopes will project the full Moon and its phases with varying levels of detail; while not as crisp as direct eyepiece viewing, it’s still an impressive sight! You can also mount your smartphone or tablet to your eyepiece for a similar Moon-viewing experience, but the funnel doesn’t need batteries.
      Of course, you can join folks in person or online to celebrate our Moon on October 4, 2025, with International Observe the Moon Night – find details at moon.nasa.gov/observe.
      Originally posted by Dave Prosper: September 2021
      Last Updated by Kat Troche: March 2025
      View the full article
    • By Space Force
      The U.S. Space Force will host the Schriever Wargame Capstone 2025 at Maxwell AFB, bringing together more than 350 participants from the DoD, industry and partner nations to explore strategic challenges in a future conflict scenario.

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home Navcam view of the ~3 ft high ridge that marks the eastern side of Volcán Peña Blanca.  The ridge is currently about 35 ft away from the rover, and the team used images like this during today’s planning to decide the exact location for Curiosity’s approach. NASA/JPL-Caltech Written by Abigail Fraeman, Deputy Project Scientist at NASA’s Jet Propulsion Laboratory
      Earth planning date: Thursday, July 3, 2025
      The team was delighted this morning to learn that Wednesday’s drive had completed flawlessly, placing us in a stable position facing a ~3 foot high ridge located ~35 feet away.  This ridge is the eastern edge of a feature the team has informally named “Volcán Peña Blanca.” This feature certainly looked intriguing in orbital images, but once we saw Curiosity’s pictures of it from the ground, we decided it was cool enough to spend the time to investigate it closer.  The images from the ground show a lot more detail than is visible in orbit, including clear sedimentary structures exposed along the ridge face which could provide important clues about how the rocks in the boxwork-bearing terrain were initially deposited – dunes? Rivers? Lakes? The team picked their favorite spot to approach the ridge and take a closer look during Wednesday’s planning, so Curiosity made a sharp right turn to take us in that direction.  Using today’s images, we refined our plan for the exact location to approach and planned a drive to take us there, setting us up for contact science on Monday.
      We had the opportunity to plan four sols today, to cover the U.S. 4th of July holiday weekend, so there was lots of time for activities besides the drive.  Curiosity is currently sitting right in front of some light toned rocks, including one we gave the evocative name “Huellas de Dinosaurios.” It’s extremely unlikely we’ll see dinosaur footprints in the rock, but we will get the chance to investigate it with APXS, MAHLI, and ChemCam.  We also have a pair of ChemCam only targets on a more typical bedrock target named “Amboro” and some pebbles named “Tunari.”  Mastcam will take a high resolution of mosaic covering Volcán Peña Blanca, some nearby rocks named “Laguna Verde,” a small light colored rock named “Suruto,” and various patterns in the ground. Two ChemCam RMI mosaics of features in the distant Mishe Mokwa face and environment monitoring activities round out the plan.

      For more Curiosity blog posts, visit MSL Mission Updates


      Learn more about Curiosity’s science instruments

      Explore More
      2 min read Curiosity Blog, Sol 4588: Ridges and troughs


      Article


      2 hours ago
      2 min read Curiosity Blog, Sols 4586-4587: Straight Drive, Strategic Science


      Article


      6 days ago
      3 min read An Update From the 2025 Mars 2020 Science Team Meeting


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars



      Mars Resources


      Explore this page for a curated collection of Mars resources.


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      2 min read
      Explore Our Dynamic Sun!
      from NASA’s Heliophysics Education Activation Team (NASA HEAT) and the Astronomical Society of the Pacific/Night Sky Network
      Have you ever wondered about what the Sun is made of? Or why do you get sunburned on even cloudy days? NASA’s new Explore the Sun toolkit brings the wonders of solar science to you, offering answers to these questions and more!
      Solar images from NASA’s Solar Dynamics Observatory show different features on the Sun, including sunspots in the visible light spectrum. Filaments and prominences can be seen in hydrogen-alpha, coronal mass ejections in X-ray, and details in ultraviolet light. On the right side of the banner, aurorae observed on Earth by the International Space Station is shown, along with aurorae on other planets as seen by NASA’s Hubble Space Telescope and James Webb Space Telescope. NASA/Astronomical Society of the Pacific A collaboration between NASA’s Heliophysics Education Activation Team (NASA HEAT) and the Astronomical Society of the Pacific’s Night Sky Network program, this resource was developed for informal educators, amateur astronomers, and astronomy enthusiasts alike, providing engaging activities for anyone eager to learn more about our nearest star.
      Whether you’re hosting a solar viewing event or an indoor presentation, the Our Dynamic Sun toolkit provides easy-to-use materials designed to spark curiosity. Each card in the set pairs NASA images with clear explanations for each topic:
      “What color is the Sun?” (hint: it’s not yellow!) “How does the Sun affect us here on Earth?” “When will the Sun die?” These cards not only answer common questions the public may have, but also highlight how NASA’s solar research helps us understand space weather, solar storms, and their impacts on our daily lives.
      Bring the Sun’s story to your community and inspire the next generation of explorers. You can download this free Our Dynamic Sun toolkit here: https://bit.ly/suntoolkit
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Advancing new hazard detection and precision landing technologies to help future space missions successfully achieve safe and soft landings is a critical area of space research and development, particularly for future crewed missions. To support this, NASA’s Space Technology Mission Directorate (STMD) is pursuing a regular cadence of flight testing on a variety of vehicles, helping researchers rapidly advance these critical systems for missions to the Moon, Mars, and beyond.  
      “These flight tests directly address some of NASA’s highest-ranked technology needs, or shortfalls, ranging from advanced guidance algorithms and terrain-relative navigation to lidar-and optical-based hazard detection and mapping,” said Dr. John M. Carson III, STMD technical integration manager for precision landing and based at NASA’s Johnson Space Center in Houston. 
      Since the beginning of this year, STMD has supported flight testing of four precision landing and hazard detection technologies from many sectors, including NASA, universities, and commercial industry. These cutting-edge solutions have flown aboard a suborbital rocket system, a high-speed jet, a helicopter, and a rocket-powered lander testbed. That’s four precision landing technologies tested on four different flight vehicles in four months. 
      “By flight testing these technologies on Earth in spaceflight-relevant trajectories and velocities, we’re demonstrating their capabilities and validating them with real data for transitioning technologies from the lab into mission applications,” said Dr. Carson. “This work also signals to industry and other partners that these capabilities are ready to push beyond NASA and academia and into the next generation of Moon and Mars landers.” 
      The following NASA-supported flight tests took place between February and May: 
      Suborbital Rocket Test of Vision-Based Navigation System  
      Identifying landmarks to calculate accurate navigation solutions is a key function of Draper’s Multi-Environment Navigator (DMEN), a vision-based navigation and hazard detection technology designed to improve safety and precision of lunar landings.  
      Aboard Blue Origin’s New Shepard reusable suborbital rocket system, DMEN collected real-world data and validated its algorithms to advance it for use during the delivery of three NASA payloads as part of NASA’s Commercial Lunar Payload Services (CLPS) initiative. On Feb. 4, DMEN performed the latest in a series of tests supported by NASA’s Flight Opportunities program, which is managed at NASA’s Armstrong Flight Research Center in Edwards, California. 
      During the February flight, which enabled testing at rocket speeds on ascent and descent, DMEN scanned the Earth below, identifying landmarks to calculate an accurate navigation solution. The technology achieved accuracy levels that helped Draper advance it for use in terrain-relative navigation, which is a key element of landing on other planets. 
      New Shepard booster lands during the flight test on February 4, 2025.Blue Origin High-Speed Jet Tests of Lidar-Based Navigation  
      Several highly dynamic maneuvers and flight paths put Psionic’s Space Navigation Doppler Lidar (PSNDL) to the test while it collected navigation data at various altitudes, velocities, and orientations.  
      Psionic licensed NASA’s Navigation Doppler Lidar technology developed at Langley Research Center in Hampton, Virginia, and created its own miniaturized system with improved functionality and component redundancies, making it more rugged for spaceflight. In February, PSNDL along with a full navigation sensor suite was mounted aboard an F/A-18 Hornet aircraft and underwent flight testing at NASA Armstrong.  
      The aircraft followed a variety of flight paths over several days, including a large figure-eight loop and several highly dynamic maneuvers over Death Valley, California. During these flights, PSNDL collected navigation data relevant for lunar and Mars entry and descent.  
      The high-speed flight tests demonstrated the sensor’s accuracy and navigation precision in challenging conditions, helping prepare the technology to land robots and astronauts on the Moon and Mars. These recent tests complemented previous Flight Opportunities-supported testing aboard a lander testbed to advance earlier versions of their PSNDL prototypes. 
      The Psionic Space Navigation Doppler Lidar (PSNDL) system is installed in a pod located under the right wing of a NASA F/A-18 research aircraft for flight testing above Death Valley near NASA’s Armstrong Flight Research Center in Edwards, California, in February 2025.NASA Helicopter Tests of Real-Time Mapping Lidar  
      Researchers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, developed a state-of-the-art Hazard Detection Lidar (HDL) sensor system to quickly map the surface from a vehicle descending at high speed to find safe landing sites in challenging locations, such as Europa (one of Jupiter’s moons), our own Moon, Mars, and other planetary bodies throughout the solar system. The HDL-scanning lidar generates three-dimensional digital elevation maps in real time, processing approximately 15 million laser measurements and mapping two football fields’ worth of terrain in only two seconds.  
      In mid-March, researchers tested the HDL from a helicopter at NASA’s Kennedy Space Center in Florida, with flights over a lunar-like test field with rocks and craters. The HDL collected numerous scans from several different altitudes and view angles to simulate a range of landing scenarios, generating real-time maps. Preliminary reviews of the data show excellent performance of the HDL system. 
      The HDL is a component of NASA’s Safe and Precise Landing – Integrated Capabilities Evolution (SPLICE) technology suite. The SPLICE descent and landing system integrates multiple component technologies, such as avionics, sensors, and algorithms, to enable landing in hard-to-reach areas of high scientific interest. The HDL team is also continuing to test and further improve the sensor for future flight opportunities and commercial applications. 
      NASA’s Hazard Detection Lidar field test team at Kennedy Space Center’s Shuttle Landing Facility in Florida in March 2025. Lander Tests of Powered-Descent Guidance Software  
      Providing pinpoint landing guidance capability with minimum propellant usage, the San Diego State University (SDSU) powered-descent guidance algorithms seek to improve autonomous spacecraft precision landing and hazard avoidance. During a series of flight tests in April and May, supported by NASA’s Flight Opportunities program, the university’s software was integrated into Astrobotic’s Xodiac suborbital rocket-powered lander via hardware developed by Falcon ExoDynamics as part of NASA TechLeap Prize’s Nighttime Precision Landing Challenge.  
      The SDSU algorithms aim to improve landing capabilities by expanding the flexibility and trajectory-shaping ability and enhancing the propellant efficiency of powered-descent guidance systems. They have the potential for infusion into human and robotic missions to the Moon as well as high-mass Mars missions.  
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      As part of a series of tethered and free-flight tests in April and May 2025, algorithms developed by San Diego State University guided the descent of the Xodiac lander testbed vehicle.Astrobotic By advancing these and other important navigation, precision landing, and hazard detection technologies with frequent flight tests, NASA’s Space Technology Mission Directorate is prioritizing safe and successful touchdowns in challenging planetary environments for future space missions.  
      Learn more:  https://www.nasa.gov/space-technology-mission-directorate/  
      By: Lee Ann Obringer
      NASA’s Flight Opportunities program
      Facebook logo @NASATechnology @NASA_Technology Explore More
      2 min read NASA Langley Uses Height, Gravity to Test Long, Flexible Booms
      Article 4 hours ago 3 min read Autonomous Tritium Micropowered Sensors
      Article 2 days ago 3 min read Addressing Key Challenges To Mapping Sub-cm Orbital Debris in LEO via Plasma Soliton Detection
      Article 2 days ago Keep Exploring Discover More …
      Space Technology Mission Directorate
      Flight Opportunities
      Moon
      These two printable STL files demonstrate the differences between the near and far side of Earth’s Moon. The near side…
      Technology
      Share
      Details
      Last Updated May 29, 2025 EditorLoura Hall Related Terms
      Space Technology Mission Directorate Armstrong Flight Research Center Flight Opportunities Program Technology Technology for Space Travel View the full article
  • Check out these Videos

×
×
  • Create New...