Jump to content

NASA Knows: How Does the Sun Behave? (Grades 5-8)


Recommended Posts

  • Publishers
Posted

This article is for students grades 5-8.

The Sun is the star of our solar system. Its gravity holds Earth and our planetary neighbors in its orbit. At 865,000 miles (1.4 million km) in diameter, it’s the largest object in our solar system. On Earth, its influence is felt in our weather, seasons, climate, and more. Let’s learn about our dynamic star and its connections to life on Earth.

What is the Sun, and what is it made of?

The Sun is a yellow dwarf star. It is approximately 4.5 billion years old and is in its “main sequence” phase. This means it is partway through its lifecycle with a few billion more years ahead of it.

The Sun is made of hydrogen and helium gases. At its core, hydrogen is fused to form helium. This nuclear reaction creates the Sun’s heat and light. That energy moves outward through the Sun’s radiative zone and convective zone. It then reaches the Sun’s visible surface and lower atmosphere, called the photosphere. Above the photosphere lies the chromosphere, which forms the Sun’s middle atmosphere, and beyond that is the corona, the Sun’s outermost atmosphere.

Spherical diagram of the sun, with a corner area cut out and different internal layers shown in various colors and labeled. Layers, from outer layer to center, are chromosphere, photosphere, subsurface flows, convection zone, radiative zone, core. Surface features labeled include prominence, coronal hole, corona, flare, sun spots
The Sun is a yellow dwarf star with a complex series of layers and features.
NASA

What is the solar cycle?

The Sun goes through a pattern of magnetic activity known as the solar cycle. During each cycle, the Sun experiences a very active period called “solar maximum” and a less active period called “solar minimum.”

During solar maximum, increased magnetic activity creates sunspots. These appear as darker, cooler spots on the Sun’s surface. The more sunspots we can see, the more active the Sun is.

The solar cycle begins at solar minimum, peaks at solar maximum, and then returns to solar minimum. This cycle is driven by the Sun’s magnetic polarity, which flips – north becomes south, and vice versa – every 11 years. It takes two cycles – or 22 years – to complete the full magnetic cycle where the poles return to their original positions.  

A side-by-side view of the rotating Sun, showing solar minimum on the left with a quiet, uniform surface, and solar maximum on the right with multiple solar flares and bright spots visible across the Sun’s surface
The Sun’s level of magnetic activity changes throughout its 11-year solar cycle. During each cycle, the Sun experiences a less-active period called “solar minimum” (left) and a very active period called “solar maximum” (right).
NASA

Wait. The Sun’s magnetic poles can flip??

Yes! Like Earth, the Sun has north and south magnetic poles. But unlike Earth, the Sun’s poles flip regularly. Each 11-year solar cycle is marked by the flipping of the Sun’s poles. The increased magnetic activity during solar maximum makes the north and south poles less defined. As the cycle moves back to solar minimum, the polarization of the poles returns – with flipped polarity.

View of the Sun with magnetic lines around it, blue on top and red on the bottom, with a rectangular magnet in the center with a South pole at the top and North pole at the bottom
Unlike Earth, the Sun’s poles regularly flip with each 11-year solar cycle.
NASA

What is space weather?

Space weather includes phenomena such as solar wind, solar storms, and solar flares. When space weather conditions are calm, there may be little noticeable effect on Earth. But when the Sun is more active, space weather has real impacts on Earth and in space.

Let’s explore these phenomena and how they affect our planet.

Illustration of solar energy radiating from the Sun into space towards Earth, with a blue magnetic field around our planet to protect it
Periods of increased solar activity can cause noticeable effects on Earth and in space.
NASA

What is solar wind?

Solar wind is a stream of charged particles that flow outward from the Sun’s corona. It extends far beyond the orbit of the planets in our solar system. When solar wind reaches Earth, its charged particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles called aurora.

Animation of charged solar particles streaming out into space past Earth. Our planet’s magnetic shield acts as a barrier redirecting particles out and around Earth
Earth’s magnetic field protects our planet from the charged solar particles of the solar wind.
NASA

What are solar storms, solar flares, and coronal mass ejections?

The Sun’s magnetic fields are a tangle of constant motion. These fields twist and stretch to the point that they snap and reconnect. When this magnetic reconnection occurs, it releases a burst of energy that can cause a solar storm.

Solar storms can include phenomena such as solar flares or coronal mass ejections. They happen more frequently around the solar maximum of the Sun’s cycle. A solar flare is an intense burst of light and energy from the Sun’s surface. Solar flares tend to happen near sunspots where the Sun’s magnetic fields are strongest. A coronal mass ejection is a massive cloud of material flowing outward from the Sun. These can occur on their own or along with solar flares.

Bright flashes and ribbons of super-heated materials snake around the Sun’s surface and arc out into space in this pair of close-up videos of solar flares
The Sun’s magnetic field is strongest near sunspots. These active regions of the Sun’s surface release energy in the form of solar flares and coronal mass ejections like these.
NASA

How do these phenomena affect Earth?

When a solar storm erupts towards Earth, our atmosphere and magnetic field protect us from significant harm. However, some impacts are possible, both on Earth and in space. For example, strong solar storms can cause power outages and radio blackouts. GPS signals can be disrupted. Satellite electronics can be affected. And astronauts working outside of the International Space Station could be exposed to dangerous radiation. NASA monitors and forecasts space weather to protect the safety and health of astronauts and spacecraft.

Colorful aurora in hues of green, yellow, purple, and pink seem to cascade over the landscape near Saskatoon in Saskatchewan, Canada
When charged particles from intense solar storms interact with Earth’s magnetic fields, colorful auroras like this one captured in Saskatchewan, Canada, can occur.
NASA

Learn more about the Sun

NASA’s Parker Solar Probe launched in 2018 on the first-ever mission to fly into the Sun’s corona. Since its first pass through the corona in 2021, every orbit has brought it closer to the Sun. On Dec. 24, 2024, it makes the first of its three final, closest solar approaches of its primary mission. Test your knowledge with NASA’s new quiz, Kahoot! Parker Solar Probe trivia.

Visit these resources for more details about the Sun:

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The SpaceX Dragon spacecraft carrying the Axiom Mission 3 crew is pictured approaching the International Space Station on Jan. 20, 2024.Credit: NASA NASA, Axiom Space, and SpaceX are targeting 2:31 a.m. EDT, Wednesday, June 25, for launch of the fourth private astronaut mission to the International Space Station, Axiom Mission 4.
      The mission will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The crew will travel to the orbiting laboratory on a new SpaceX Dragon spacecraft after launching on the company’s Falcon 9 rocket. The targeted docking time is approximately 7 a.m. Thursday, June 26.
      This launch opportunity comes after NASA and Roscosmos officials discussed the status of the recent repair work in the transfer tunnel at the aft (back) most segment of the orbital laboratory’s Zvezda service module. Based on the evaluations, NASA and Roscosmos agreed to further lower the pressure in the transfer tunnel to 100 millimeters of mercury, and teams will continue to evaluate going forward. Safety remains a top priority for NASA and Roscosmos.
      “NASA and Roscosmos have a long history of cooperation and collaboration on the International Space Station. This professional working relationship has allowed the agencies to arrive at a shared technical approach and now Axiom Mission 4 launch and docking will proceed,” said acting NASA Administrator Janet Petro. “We look forward to the launch with Axiom Space and SpaceX for this commercial international mission.”
      For this mission, NASA is responsible for integrated operations, which begins during the spacecraft’s approach to the space station, continues during the crew’s stay aboard the orbiting laboratory conducting science, education, and commercial activities, and concludes once the spacecraft departs the station.
      Live coverage of launch and arrival activities will stream on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO (Indian Space Research Organisation) astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary.
      Once docked, the private astronauts plan to spend about two weeks aboard the orbiting laboratory, conducting a mission comprised of science, outreach, and commercial activities.
      As part of a collaboration between NASA and ISRO, Axiom Mission 4 delivers on a commitment highlighted by President Donald Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies are participating in five joint science investigations and two in-orbit STEM (science, technology, engineering, and mathematics) demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      The private mission also carries the first astronauts from Poland and Hungary to stay aboard the International Space Station.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, June 25
      12:30 a.m. – Axiom Space and SpaceX launch coverage begins.
      1:40 a.m. – NASA joins the launch coverage on NASA+.
      2:31 a.m. – Launch
      NASA will end coverage following orbital insertion, which is approximately 15 minutes after launch. As it is a commercial launch, NASA will not provide a clean launch feed on its channels.
      Thursday, June 26
      5 a.m. – Arrival coverage begins on NASA+, Axiom Space, and SpaceX channels.
      7 a.m. – Targeted docking to the space-facing port of the station’s Harmony module.
      Arrival coverage will continue through hatch opening and welcome remarks.
      All times are estimates and could be adjusted based on real-time operations after launch. Follow the space station blog for the most up-to-date operations information.
      The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Share
      Details
      Last Updated Jun 24, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Crew Commercial Space Commercial Space Programs International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By NASA
      NASA astronaut Zena Cardman inspects her spacesuit’s wrist mirror at the NASA Johnson Space Center photo studio on March 22, 2024.NASA/Josh Valcarcel NASA astronaut Zena Cardman [link to her bio] inspects her spacesuit’s wrist mirror in this portrait taken at NASA’s Johnson Space Center in Houston on March 22, 2024. Cardman will launch to the International Space Station as part of NASA’s SpaceX Crew-11 mission. This will be her first spaceflight.
      Cardman was selected by NASA as a member of the 2017 “Turtles” Astronaut Class. The Virginia native holds a Bachelor’s of Science in Biology and a Master’s of Science in Marine Sciences from the University of North Carolina, Chapel Hill. Her research focused primarily on geobiology and geochemical cycling in subsurface environments, from caves to deep sea sediments. Cardman’s experience includes multiple Antarctic expeditions. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning.
      This photo was one of the winners of NASA’s 2024 Photos of the Year.
      View the full article
    • By NASA
      Ozone high in the stratosphere protects us from the Sun’s ultraviolet light. But ozone near the ground is a pollutant that harms people and plants. The San Joaquin Valley has some of the most polluted air in the country, and NASA scientists with the new Ozone Where We Live (OWWL) project are working to measure ozone and other pollutants there. They need your help!  
      Do you live or work in Bakersfield, CA? Sign up to host an ozone sensor! It’s like a big lunch box that you place in your yard, but it’s not packed with tuna and crackers. It’s filled with sensors that measure temperature and humidity and sniff out dangerous gases like methane, carbon monoxide, carbon dioxide, and of course, ozone. 
      Can you fly a plane? Going to the San Joaquin Valley? Sign up to take an ozone sensor on your next flight! You can help measure ozone levels in layers of the atmosphere that are hard for satellites to investigate. Scientists will combine the data you take with data from NASA’s TEMPO satellite to improve air quality models and measurements within the region. Find out more here or email: Emma.l.yates@nasa.gov
      Join the Ozone Where We Live (OWWL) project and help NASA scientists protect the people of the San Joaquin Valley! Credit: Emma Yates Share








      Details
      Last Updated Jun 24, 2025 Related Terms
      Citizen Science Earth Science Division Tropospheric Emissions: Monitoring of Pollution (TEMPO) Explore More
      4 min read c-FIRST Team Sets Sights on Future Fire-observing Satellite Constellations


      Article


      3 weeks ago
      2 min read Summer Students Scan the Radio Skies with SunRISE


      Article


      4 weeks ago
      2 min read Space Cloud Watch Needs Your Photos of Night-Shining Clouds 


      Article


      1 month ago
      View the full article
    • By Amazing Space
      Sun Close up Views/ Backyard Astronomy with Lunt Telescope
    • By Amazing Space
      LIVE NOW: Sun Close up Views/ 21st JUNE / Summer Solstice Backyard Astronomy with Lunt Telescope
  • Check out these Videos

×
×
  • Create New...