Jump to content

New Commercial Artemis Moon Rovers Undergo Testing at NASA


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Three lunar terrain vehicles side by side inside of a large chamber with dramatic lighting. Astrolab's lunar terrain vehicle is white with the their orange logo on the front of the rover. Intuitive Machines' lunar terrain vehicle is white with a blue stripe on the front and their logo on the top of their rover. Lunar Outpost's lunar terrain vehicle is grey with green lights.
From left to right: Astrolab’s FLEX, Intuitive Machines’ Moon RACER, and Lunar Outpost’s Eagle lunar terrain vehicle at NASA’s Johnson Space Center.
NASA/Bill Stafford

Through NASA’s Artemis campaign, astronauts will land on the lunar surface and use a new generation of spacesuits and rovers as they live, work, and conduct science in the Moon’s South Pole region, exploring more of the lunar surface than ever before. Recently, the agency completed the first round of testing on three commercially owned and developed LTVs (Lunar Terrain Vehicle) from Intuitive Machines, Lunar Outpost, and Venturi Astrolab at NASA’s Johnson Space Center in Houston.

As part of an ongoing year-long feasibility study, each company delivered a static mockup of their vehicle to Johnson at the end of September, initiated rover testing in October and completed the first round of testing in December inside the Active Response Gravity Offload System (ARGOS) test facility. Lunar surface gravity is one-sixth of what we experience here on Earth, so to mimic this, ARGOS offers an analog environment that can offload pressurized suited subjects for various reduced gravity simulations. 

This is the first major test milestone within the Lunar Terrain Vehicle Services contract and to have actual rovers delivered only four months after these companies were awarded is remarkable.

steve munday

steve munday

NASA's Lunar Terrain Vehicle Project Manager

NASA’s engineering teams conducted tests where suited NASA astronauts and engineers performed tasks, maneuvers, and emergency drills on each rover. With astronauts acting as the test subjects, these human-in-the-loop tests are invaluable as crewmembers provide critical feedback on each rover’s design functionality, evaluate display interfaces and controls, and help identify potential safety concerns or design issues. This feedback is shared directly with each commercial provider, to incorporate changes based on lessons learned as they evolve their rover design.

“We are excited to have mockups from all three LTV commercial providers here at Johnson Space Center,” said Steve Munday, LTV project manager. “This is the first major test milestone within the Lunar Terrain Vehicle Services contract and to have actual rovers delivered only four months after these companies were awarded is remarkable.” 

NASA engineer Dave Coan and NASA astronaut Jessica Watkins are wearing white spacesuits while sitting inside of Intuitive Machines’ Moon RACER lunar terrain vehicle. The rover is white with a blue stripe down the middle. There is a test team surrounding them with the test lead is holding a clipboard.
NASA engineer Dave Coan (left) and NASA astronaut Jessica Watkins (right) sit inside from Intuitive Machines’ Moon RACER lunar terrain vehicle evaluating the crew compartment during testing at NASA’s Johnson Space Center.
NASA/James Blair

Testing consisted of NASA astronauts and engineers taking turns wearing both NASA’s Exploration Extravehicular Mobility Unit planetary prototype spacesuit as well as Axiom Space’s Axiom Extravehicular Mobility Unit lunar spacesuit. The test teams performed evaluations to understand the interactions between the crew, the spacesuits, and the LTV mockups. 

While wearing NASA’s prototype spacesuit, crew members were suspended from ARGOS allowing teams to mimic theone-sixth gravitational field of the lunar surface. This allowed the crew members to conduct tasks on the outside of each rover, such as gathering or storing lunar geology tools, deploying science payloads, and handling cargo equipment, as if they are walking on the Moon.

NASA astronaut Joe Acaba is shown in a white spacesuit, rotating a handle to raise a black solar array panel on Lunar Outpost’s Eagle lunar terrain vehicle.
NASA astronaut Joe Acaba raises the solar array panel on Lunar Outpost’s Eagle lunar terrain vehicle during testing at NASA’s Johnson Space Center.
NASA/Robert Markowitz

While wearing Axiom Space’s pressurized spacesuit, teams evaluated the level of ease or difficulty in mobility crewmembers experienced when entering and exiting the rovers, the crew compartment and design, and the functionality of interacting with display interfaces and hand controls while wearing thick spacesuit gloves.

As part of testing, teams also conducted emergency drills, where engineers simulated rescuing an incapacitated crew member. As part of NASA’s requirements, each rover must have a design in place that enables an astronaut to single-handedly rescue their crewmates in the event of an emergency.

NASA astronaut Jessica Watkins is wearing a white spacesuit with the American flag on her left shoulder. She is pickup up a lunar geology tool from a tool drawer located outside of Astrolab's white lunar terrain vehicle. There is an orange Astrolab logo on the rover.
NASA astronaut Jessica Watkins picks up a lunar geology tool from a stowage drawer on Astrolab’s FLEX lunar terrain vehicle during testing at NASA’s Johnson Space Center.
NASA/Robert Markowitz

Since NASA selected the companies, Intuitive Machines, Lunar Outpost, and Venturi Astrolab have been working to meet NASA’s requirements through the preliminary design review. In 2025, the agency plans to issue a request for task order proposals to any eligible providers for a demonstration mission to continue developing the LTV, deliver it to the surface of the Moon, and validate its performance and safety ahead of Artemis V, when NASA intends to begin using the LTV for crewed operations.

Through Artemis, NASA will send astronauts – including the next Americans, and the first international partner astronaut – to explore the Moon for scientific discovery, technology evolution, economic benefits, and to build the foundation for future crewed missions to Mars. 

Learn about the rovers, suits, and tools that will help Artemis astronauts to explore more of the Moon: 

https://go.nasa.gov/3MnEfrB

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Views of the Moon - Gorgeous Moon Video with Moon Facts!
    • By NASA
      NASA researchers Matt Gregory, right, Arwa Awiess, center, and Andrew Guion, left, discuss live flight data being ingested at the Mission Visualization and Research Control Center (MVRCC) at NASA’s Ames Research Center in California’s Silicon Valley on Aug. 21, 2025.NASA/ Brandon Torres-Navarrete NASA and its partners recently tested a tool for remotely piloted operations that could enable operators to transport people and goods more efficiently within urban areas.  
      The team’s goal is to ensure that when these remotely piloted aircraft – including electric vertical takeoff and landing vehicles (eVTOLs) – take to the skies, air traffic controllers won’t be overburdened by increased flight operations and safety is maintained across the national airspace. 
      On Aug. 21, NASA’s Air Traffic Management eXploration Project (ATM-X) assisted Wisk Aero when they flew a Bell 206 helicopter in Hollister, California. The purpose of the flight test was to evaluate and fine-tune a ground-based radar developed by Collins Aerospace. The radar, which provides aircraft location data, could be used during future remotely piloted operations to detect and avoid other aircraft in the vicinity.  NASA, Wisk, and Collins researchers also used the flight to test data exchange capabilities across different geographic locations between the groups, a critical capability for future remotely piloted operators in a shared airspace. This work builds on a November 2024 flight test NASA performed with Reliable Robotics and Collins Aerospace.  
      Initial analysis of the August testing of Collins’ ground-based radar actively and accurately surveilled the airspace during the aircraft’s flight test. The Collins radar system also successfully transmitted these data to NASA’s Mission Visualization Research Command Center lab at NASA’s Ames Research Center in California’s Silicon Valley. NASA, Wisk, and Collins will further analyze the flight data to better understand the radar’s performance and data exchange capabilities for future remotely piloted flight tests. This testing is a part of ATM-X’s remotely piloted testing campaign, designed to identify the infrastructure and technologies needed for the Federal Aviation Administration to safely integrate drones and air taxis into the airspace, bringing the movement of people and goods off the ground, and into the sky.   
      Remotely piloted eVTOL aircraft could bridge the gap for urban communities by offering a more affordable and accessible method of transportation and delivery services in congested, highly-populated areas. 
      NASA and Wisk will continue to collaborate on emerging eVTOL technologies to safely integrate advanced aircraft, into the national airspace. Together, the teams will gather data on eVTOL performance and characteristics during a flight test of a helicopter, which will act as a “surrogate” simulating an eVTOL flight. This work will mark another critical step towards better connecting communities across the globe.
      View the full article
    • By NASA
      Three New Missions Launch to Track Space Weather
    • By NASA
      NASA/Michael DeMocker NASA astronauts Matthew Dominick (left) and Mark Vande Hei (right) prepare to fly out to a landing zone in the Rocky Mountains as part of the certification run for the NASA Artemis course on Aug. 26, 2025. The mountains in northern Colorado offer similar visual illusions and flight environments to the Moon.
      The newly certified lander flight training course marks a key milestone in crew training for Artemis missions to the Moon. Through Artemis, NASA will explore the lunar South Pole, paving the way for human exploration farther into the solar system, including Mars.
      Learn more about the training course.
      Image credit: NASA/Michael DeMocker
      View the full article
    • By NASA
      5 min read
      Avatars for Astronaut Health to Fly on NASA’s Artemis II
      An organ chip for conducting bone marrow experiments in space. Emulate NASA announced a trailblazing experiment that aims to take personalized medicine to new heights. The experiment is part of a strategic plan to gather valuable scientific data during the Artemis II mission, enabling NASA to “know before we go” back to the lunar surface and on to Mars.
      The AVATAR (A Virtual Astronaut Tissue Analog Response) investigation will use organ-on-a-chip devices, or organ chips, to study the effects of deep space radiation and microgravity on human health. The chips will contain cells from Artemis II astronauts and fly side-by-side with crew on their approximately 10-day journey around the Moon. This research, combined with other studies on the health and performance of Artemis II astronauts, will give NASA insight into how to best protect astronauts as exploration expands to the surface of the Moon, Mars, and beyond. 
      AVATAR is NASA’s visionary tissue chip experiment that will revolutionize the very way we will do science, medicine, and human multi-planetary exploration.”
      Nicky Fox
      Associate Administrator, NASA Science Mission Directorate
      “AVATAR is NASA’s visionary tissue chip experiment that will revolutionize the very way we will do science, medicine, and human multi-planetary exploration,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Each tissue chip is a tiny sample uniquely created so that we can examine how the effects of deep space act on each human explorer before we go to ensure we pack the appropriate medical supplies tailored to each individual’s needs as we travel back to the Moon, and onward to Mars.”
      The investigation is a collaboration between NASA, government agencies, and industry partners, leveraging commercial expertise to gain a deeper understanding of human biology and disease. This research could accelerate innovations in personalized healthcare, both for astronauts in space and patients on Earth.
      Organ-on-a-chip: mimic for human health
      Organ chips, also referred to as tissue chips or microphysiological systems, are roughly the size of a USB thumb drive and used to help understand — and then predict — how an individual might respond to a variety of stressors, such as radiation or medical treatments, including pharmaceuticals. Essentially, these small devices serve as “avatars” for human organs. 
      Organ chips contain living human cells that are grown to model the structures and functions of specific regions in human organs, such as the brain, lungs, heart, pancreas, and liver — they can beat like a heart, breathe like a lung, or metabolize like a liver. Tissue chips can be linked together to mimic how organs interact with each other, which is important for understanding how the whole human body responds to stressors or treatments.
      Researchers and oncologists use human tissue chips today to understand how a specific patient’s cancer might react to different drugs or radiation treatments. To date, a standard milestone for organs-on-chips has been to keep human cells healthy for 30 days. However, NASA and other research institutions are pushing these boundaries by increasing the longevity of organ chips to a minimum of six months so that scientists can observe diseases and drug therapies over a longer period.
      Bone marrow as bellwether
      The Artemis II mission will use organ chips created using blood-forming stem and progenitor cells, which originate in the bone marrow, from Artemis II crew members.
      Bone marrow is among the organs most sensitive to radiation exposure and, therefore, of central importance to human spaceflight. It also plays a vital role in the immune system, as it is the origin of all adult red and white blood cells, which is why researchers aim to understand how deep space radiation affects this organ.
      Studies have shown that microgravity affects the development of bone marrow cells. Although the International Space Station operates in low Earth orbit, which is shielded from most cosmic and solar radiation by the Earth’s magnetosphere, astronauts often experience a loss of bone density. Given that Artemis II crew will be flying beyond this protective layer, AVATAR researchers also seek to understand how the combined stressors of deep space radiation and microgravity affect the developing cells.
      To make the bone marrow organ chips, Artemis II astronauts will first donate platelets to a local healthcare system. The cells remaining from their samples will contain a small percentage of bone marrow-derived stem and progenitor cells. NASA-funded scientists at Emulate, Inc., which developed the organ chip technology used in AVATAR, will purify these cells with magnetic beads that bind specifically to them. The purified cells will then be placed in the bone marrow chips next to blood vessel cells and other supporting cells to model the structure and function of the bone marrow.
      Investigating how radiation affects the bone marrow can provide insights into how radiation therapy and other DNA-damaging agents, such as chemotherapeutic drugs, impair blood cell formation. Its significance for both spaceflight and medicine on Earth makes the bone marrow an ideal organ to study in the Artemis II AVATAR project.
      Passenger for research
      “For NASA, organ chips could provide vital data for protecting astronaut health on deep space missions,” said Lisa Carnell, director of NASA’s Biological and Physical Sciences division at NASA Headquarters. “As we go farther and stay longer in space, crew will have only limited access to on-site clinical healthcare. Therefore, it’ll be critical to understand if there are unique and specific healthcare needs of each astronaut, so that we can send the right supplies with them on future missions.”
      During the Artemis II mission, the organ chips will be secured in a custom payload developed by Space Tango and mounted inside the capsule during the mission. The battery-powered payload will maintain automated environmental control and media delivery to the organ chips throughout the flight.
      For NASA, organ chips could provide vital data for protecting astronaut health on deep space missions.”
      Lisa Carnell
      Director of NASA’s Biological and Physical Sciences Division
      Upon return, researchers at Emulate will examine how spaceflight affected the bone marrow chips by performing single-cell RNA sequencing, a powerful technique that measures how thousands of genes change within individual cells. The scientists will compare data from the flight samples to measurements of crew cells used in a ground-based immunology study happening simultaneously. This will provide the most detailed look at the impact of spaceflight and deep space radiation on developing blood cells to date.
      Keep Exploring BPS Scientific Goals
      Goals



      Precision Health



      AVATAR



      Quantum Leaps


      Biological & Physical Sciences Division (BPS)

      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      View the full article
  • Check out these Videos

×
×
  • Create New...