Members Can Post Anonymously On This Site
La NASA probará tecnología para medir las singulares ondas de choque del X-59
-
Similar Topics
-
By NASA
NASA/Charles Beason Students from the University of Massachusetts Amherst team carry their high-powered rocket toward the launch pad at NASA’s 2025 Student Launch launch day competition in Toney, Alabama, on April 4, 2025. More than 980 middle school, high school, and college students from across the nation launched more than 40 high-powered amateur rockets just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. This year marked the 25th anniversary of the competition.
To compete, students follow the NASA engineering design lifecycle by going through a series of reviews for nine months leading up to launch day. Each year, a payload challenge is issued to the university teams, and this year’s task focused on communication. Teams were required to have “reports” from STEMnauts, non-living objects inside their rocket, that had to relay real-time data to the student team’s mission control. This Artemis Student Challenge took inspiration from the agency’s Artemis missions, where NASA will send astronauts to explore the Moon for scientific discovery, economic benefit, and to build the foundation for the first crewed missions to Mars.
See highlights from the 2025 Student Launch.
Text credit: NASA/Janet Sudnik
Image credit: NASA/Charles Beason
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
When most people think of NASA, they picture rockets, astronauts, and the Moon. But behind the scenes, a group of inventors is quietly rewriting the rules of what’s possible — on Earth, in orbit, and beyond. Their groundbreaking inventions eventually become technology available for industry, helping to shape new products and services that improve life around the globe. For their contributions to NASA technology, we welcome four new inductees into the 2024-2025 NASA Inventors Hall of Fame
A robot for space and the workplace
Myron (Ron) Diftler led the team behind Robonaut 2 (R2), a humanoid robot developed with General Motors. The goal was to create a robot that could help humans both in space and on the factory floor. The R2 robot became the first humanoid robot in space aboard the International Space Station, and part of its technology was licensed for use on Earth, leading to a grip-strengthening robotic glove to help humans with strenuous, repetitive tasks. From factories to space exploration, Diftler’s work has real-world impact.
Some of the toughest electronic chips on and off Earth
Technology developed to one day explore the surface of Venus has to be tough enough to survive the planet where temperatures hit 860°F and the atmosphere is akin to battery acid. Philip Neudeck’s silicon carbide integrated circuits don’t just work — they ran for over 60 days in simulated Venus-like conditions. On Earth, these chips can boost efficiency in wireless communication systems, help make drilling for oil safer, and enable more practical electric vehicles.
From developing harder chip materials to unlocking new planetary missions, Neudeck is proving that the future of electronics isn’t just about speed — it’s about survival.
Hydrogen sensors that could go the distance on other worlds
Gary Hunter helped develop a hydrogen sensor so advanced it’s being considered for a future mission to Titan, Saturn’s icy moon. These and a range of other sensors he’s helped developed have applications that go beyond space exploration, such as factory floors here on Earth.
With new missions on the horizon and smarter sensors in development, Hunter is still pushing the boundaries of what NASA technology can do. Whether it’s Titan, the surface of Venus, or somewhere we haven’t dreamed of yet, this work could help shape the way to get there.
Advanced materials research to make travel safer
Advanced materials, such as foams and composites, are key to unlocking the next generation of manufacturing. From space exploration to industry, Erik Weiser spent years contributing his expertise to the development of polymers, ceramics, metals, nanomaterials, and more. He is named on more than 20 patents. During this time, he provided his foam expertise to the Space Shuttle Columbia accident investigation, the Shuttle Discovery Return-to-Flight Investigation and numerous teams geared toward improving the safety of the shuttle.
Today, Weiser serves as director of the Facilities and Real Estate Division at NASA Headquarters, overseeing the foundation of NASA’s missions. Whether it’s advancing research or optimizing real estate across the agency, he’s helping launch the future, one facility at a time.
Want to learn more about NASA’s game changing innovations? Visit the NASA Inventors Hall of Fame.
Read More Share
Details
Last Updated May 09, 2025 Related Terms
Technology Technology Transfer Technology Transfer & Spinoffs Explore More
3 min read Key Portion of NASA’s Roman Space Telescope Clears Thermal Vacuum Test
Article 2 days ago 4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
Article 3 days ago 6 min read NASA Data Helps Map Tiny Plankton That Feed Giant Right Whales
In the waters off New England, one of Earth’s rarest mammals swims slowly, mouth agape.…
Article 4 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Editor’s Note: The following is one of three related articles about the NASA Data Acquisition System and related efforts. Please visit Stennis News – NASA to access accompanying articles.
The NASA Data Acquisition System, developed at NASA Stennis, is used in multiple test areas at NASA’s Marshall Space Flight Center in Huntsville, Alabama, including Test Facility 116. The facility consists of an open-steel test stand structure, primarily used for subscale testing, and three adjacent test bays designed for large-scale/full-scale testing. NASA/Marshall Space Flight Center Teams at NASA’s Langley Research Center in Hampton, Virginia conduct a test in the 8-Foot High-Temperature Tunnel. The NASA Data Acquisition System, developed at NASA Stennis, represents a potential solution for engineers seeking to standardize data systems at NASA Langley. NASA/Langley Research Center Teams at Test Stand 403, located at NASA’s White Sands Test Facility in Las Cruces, New Mexico, plan to use the NASA Data Acquisition System to support testing and development projects related to NASA’s Orion spacecraft.NASA/White Sands Test Facility A data-focused software tool created at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, continues to expand its capabilities and use across the agency.
Much like the software on a cell phone, the NASA Data Acquisition System (NDAS) software evolves with updates to meet user needs.
“It is not just because we are seeking new opportunities that we evolve,” said Kris Mobbs, NASA project manager for NDAS. “It is because the community of people using this software tell us about all the new, cool things happening and how they want to use the tool.”
Created as a standard method for collecting rocket propulsion test data, NDAS is proving to be a building block to acquire, display, and process various datasets. The flexibility of the software has supplied solutions for NASA’s work in New Mexico and Alabama and is being evaluated for data acquisition needs in Virginia.
When NASA’s White Sands Test Facility in Las Cruces, New Mexico, needed a new data acquisition system with a flexible design, the facility reached out to NASA Stennis since the center had demonstrated success with a similar challenge.
“A major benefit for the agency is having a software platform that is agency owned and developed,” said Josh Simmons, White Sands technical upgrades lead. “Stennis is leading the way and the way the system is written and documented, other programmers can jump in, and the way they have it designed, it can continue on and that is key.”
The NASA Stennis team updated its NDAS platform based on input from White Sands personnel to make it more adaptable and to increase data acquisition rates.
“They look to understand the requirements and to develop an application that is flexible to meet everybody’s requirements,” Simmons said. “They are always willing to improve it, to make it more applicable to a wider audience.”
NDAS will be the primary data acquisition and control systems to support testing and development projects related to NASA’s Orion spacecraft.
“I would like to standardize around it here at White Sands,” said Simmons. “I want to show the worth and versatility of NDAS, so people who need it make a choice to use it.”
Meanwhile at NASA’s Marshall Space Flight Center in Huntsville, Alabama, NDAS is used in multiple areas for small-scale, subscale, and full-scale testing.
Devin Rios Ogle is a contractor software engineer at NASA Marshall, responsible for integrating and upgrading the data acquisition system in the testing areas. The system is used to record data on test sequences to verify they happen as intended.
“The visualization of data is really nice compared to other software I have worked with,” said Rios Ogle. “It is easier to see what data you want to see when you want to see it. You select a measurement, and you can see it in graph form, or tabular form, or however you would like. It is visually appealing and very easy to find the stuff you need.”
Rios Ogle is familiar with the database behind the system and understands what the program is trying to do. He particularly noted the modular approach built into the system, which allows users to adapt the software as needed and is a feature others would find beneficial.
Marcus Jackson, a contractor instrumentation and control engineer at NASA Marshall, echoed Ogle’s assessment of NDAS, noting that it has allowed the center to condense multiple systems into a single package that meets the team’s unique needs.
“Ultimately, NDAS provides us with an excellent software package that is built specifically for the kind of work performed here and at other test stands across the United States,” said Jackson. “It is easy to install, manage, and scale up. It doesn’t break, but if you do find a bug or issue, the NDAS team is very quick to respond and help you find a solution.”
NDAS also represents a potential solution for engineers seeking to standardize data systems at NASA’s Langley Research Center in Hampton, Virginia, a use that could positively impact a mission’s ability to make data-informed decisions.
“We are investigating alternatives for standardization at all Langley facilities,” said Scott Simmons, NASA Langley data systems engineer. “Standardization has the potential for significant maintenance cost savings and efficiencies because of the sharing of the software. Having an instance of NDAS available for the dynamic data system at the 8-Foot High Temperature tunnel enables us to evaluate it as a potential solution for standardization at Langley.”
As the nation’s largest hypersonic blow-down test facility, the tunnel duplicates, as near as possible, flight conditions that would be encountered by hypersonic vehicles at up to Mach 6.5, or more than six times the speed of sound.
Even as its use grows, the NASA Stennis-led software project continues to gain momentum as it expands its capabilities and collaboration with users.
“The goal is to provide a software portfolio that supports a wide range of exciting NASA projects, involving lots of talented people that collaborate and innovate new software solutions far into the future,” Mobbs said. “This is a community of innovative, ambitious, and supportive engineers and scientists across all engineering disciplines that are dedicated to advancing NASA’s bold missions.”
Read More Share
Details
Last Updated May 08, 2025 Related Terms
Stennis Space Center View the full article
-
By NASA
Explore This Section Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read New Visualization From NASA’s Webb Telescope Explores Cosmic Cliffs
The landscape of “mountains” and “valleys” known as the Cosmic Cliffs is actually a portion of the nebula Gum 31, which contains a young star cluster called NGC 3324. Both Gum 31 and NGC 3324 are part of a vast star-forming region known as the Carina Nebula Complex. Credits:
NASA, ESA, CSA, STScI. In July 2022, NASA’s James Webb Space Telescope made its public debut with a series of breathtaking images. Among them was an ethereal landscape nicknamed the Cosmic Cliffs. This glittering realm of star birth is the subject of a new 3D visualization derived from the Webb data. The visualization, created by NASA’s Universe of Learning and titled “Exploring the Cosmic Cliffs in 3D,” breathes new life into an iconic Webb image.
It is being presented today at a special event hosted by the International Planetarium Society to commemorate the 100th anniversary of the first public planetarium in Munich, Germany.
The landscape of “mountains” and “valleys” known as the Cosmic Cliffs is actually a portion of the nebula Gum 31, which contains a young star cluster called NGC 3324. Both Gum 31 and NGC 3324 are part of a vast star-forming region known as the Carina Nebula Complex.
Ultraviolet light and stellar winds from the stars of NGC 3324 have carved a cavernous area within Gum 31. A portion of this giant bubble is seen above the Cosmic Cliffs. (The star cluster itself is outside this field of view.)
The Cliffs display a misty appearance, with “steam” that seems to rise from the celestial mountains. In actuality, the wisps are hot, ionized gas and dust streaming away from the nebula under an onslaught of relentless ultraviolet radiation.
Eagle-eyed viewers may also spot particularly bright, yellow streaks and arcs that represent outflows from young, still-forming stars embedded within the Cosmic Cliffs. The latter part of the visualization sequence swoops past a prominent protostellar jet in the upper right of the image.
Video: Exploring the Cosmic Cliffs in 3D
In July 2022, NASA’s James Webb Space Telescope made history, revealing a breathtaking view of a region now nicknamed the Cosmic Cliffs. This glittering landscape, captured in incredible detail, is part of the nebula Gum 31 — a small piece of the vast Carina Nebula Complex — where stars are born amid clouds of gas and dust.
This visualization brings Webb’s iconic image to life — helping us imagine the true, three-dimensional structure of the universe… and our place within it.
Produced for NASA by the Space Telescope Science Institute (STScI) with partners at Caltech/IPAC, and developed by the AstroViz Project of NASA’s Universe of Learning, this visualization is part of a longer, narrated video that provides broad audiences, including youth, families, and lifelong learners, with a direct connection to the science and scientists of NASA’s Astrophysics missions. That video enables viewers to explore fundamental questions in science, experience how science is done, and discover the universe for themselves.
“Bringing this amazing Webb image to life helps the public to comprehend the three-dimensional structure inherent in the 2D image, and to develop a better mental model of the universe,” said STScI’s Frank Summers, principal visualization scientist and leader of the AstroViz Project.
More visualizations and connections between the science of nebulas and learners can be explored through other products produced by NASA’s Universe of Learning including a Carina Nebula Complex resource page and ViewSpace, a video exhibit that is currently running at almost 200 museums and planetariums across the United States. Visitors can go beyond video to explore the images produced by space telescopes with interactive tools now available for museums and planetariums.
NASA’s Universe of Learning materials are based upon work supported by NASA under award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and NASA’s Jet Propulsion Laboratory.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
NASA’s Universe of Learning is part of the NASA Science Activation program, from the Science Mission Directorate at NASA Headquarters. The Science Activation program connects NASA science experts, real content and experiences, and community leaders in a way that activates minds and promotes deeper understanding of our world and beyond. Using its direct connection to the science and the experts behind the science, NASA’s Universe of Learning provides resources and experiences that enable youth, families, and lifelong learners to explore fundamental questions in science, experience how science is done, and discover the universe for themselves.
To learn more about Webb, visit:
https://science.nasa.gov/webb
Downloads
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Explore more: Carina Nebula Complex from NASA’s Universe of Learning
Read more: Webb’s view of the Cosmic Cliffs
Listen: Carina Nebula sonification
Read more: Webb’s star formation discoveries
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Stars
Stars Stories
Universe
Share
Details
Last Updated May 07, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars The Universe View the full article
-
By NASA
Explore This Section Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Lifts Veil on Common but Mysterious Type of Exoplanet
This artist’s concept shows what the hot sub-Neptune exoplanet TOI-421 b could look like. It is based on spectroscopic data gathered by Webb, as well as previous observations from other telescopes on the ground and in space. Credits:
Illustration: NASA, ESA, CSA, Dani Player (STScI) Though they don’t orbit around our Sun, sub-Neptunes are the most common type of exoplanet, or planet outside our solar system, that have been observed in our galaxy. These small, gassy planets are shrouded in mystery…and often, a lot of haze. Now, by observing exoplanet TOI-421 b, NASA’s James Webb Space Telescope is helping scientists understand sub-Neptunes in a way that was not possible prior to the telescope’s launch.
“I had been waiting my entire career for Webb so that we could meaningfully characterize the atmospheres of these smaller planets,” said principal investigator Eliza Kempton of the University of Maryland, College Park. “By studying their atmospheres, we’re getting a better understanding of how sub-Neptunes formed and evolved, and part of that is understanding why they don’t exist in our solar system.”
Image A: Artist’s Concept of TOI-421 b
This artist’s concept shows what the hot sub-Neptune exoplanet TOI-421 b could look like. It is based on spectroscopic data gathered by Webb, as well as previous observations from other telescopes on the ground and in space. Illustration: NASA, ESA, CSA, Dani Player (STScI) Small, Cool, Shrouded in Haze
The existence of sub-Neptunes was unexpected before they were discovered by NASA’s retired Kepler space telescope in the last decade. Now, astronomers are trying to understand where these planets came from and why are they so common.
Before Webb, scientists had very little information on them. While sub-Neptunes are a few times larger than Earth, they are still much smaller than gas-giant planets and typically cooler than hot Jupiters, making them much more challenging to observe than their gas-giant counterparts.
A key finding prior to Webb was that most sub-Neptune atmospheres had flat or featureless transmission spectra. This means that when scientists observed the spectrum of the planet as it passed in front of its host star, instead of seeing spectral features – the chemical fingerprints that would reveal the composition of the atmosphere – they saw only a flat-line spectrum. Astronomers concluded from all of those flat-line spectra that at least certain sub-Neptunes were probably very highly obscured by either clouds or hazes.
Image B: Spectrum of TOI-421 b
A transmission spectrum captured by NASA’s James Webb Space Telescope reveals chemicals in the atmosphere of the hot sub-Neptune exoplanet TOI-421 b. Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI) A Different Kind of Sub-Neptune?
“Why did we observe this planet, TOI-421 b? It’s because we thought that maybe it wouldn’t have hazes,” said Kempton. “And the reason is that there were some previous data that implied that maybe planets over a certain temperature range were less enshrouded by haze or clouds than others.”
That temperature threshold is about 1,070 degrees Fahrenheit. Below that, scientists hypothesized that a complex set of photochemical reactions would occur between sunlight and methane gas, and that would trigger the haze. But hotter planets shouldn’t have methane and therefore perhaps shouldn’t have haze.
The temperature of TOI-421 b is about 1,340 degrees Fahrenheit, well above the presumed threshold. Without haze or clouds, researchers expected to see a clear atmosphere – and they did!
A Surprising Finding
“We saw spectral features that we attribute to various gases, and that allowed us to determine the composition of the atmosphere,” said the University of Maryland’s Brian Davenport, a third-year Ph.D. student who conducted the primary data analysis. “Whereas with many of the other sub-Neptunes that had been previously observed, we know their atmospheres are made of something, but they’re being blocked by haze.”
The team found water vapor in the planet’s atmosphere, as well as tentative signatures of carbon monoxide and sulfur dioxide. Then there are molecules they didn’t detect, such as methane and carbon dioxide. From the data, they can also infer that a large amount of hydrogen is in TOI-421 b’s atmosphere.
The lightweight hydrogen atmosphere was the big surprise to the researchers. “We had recently wrapped our mind around the idea that those first few sub-Neptunes observed by Webb had heavy-molecule atmospheres, so that had become our expectation, and then we found the opposite,” said Kempton. This suggests TOI-421 b may have formed and evolved differently from the cooler sub-Neptunes observed previously.
Is TOI-421 b Unique?
The hydrogen-dominated atmosphere is also interesting because it mimics the composition of TOI-421 b’s host star. “If you just took the same gas that made the host star, plopped it on top of a planet’s atmosphere, and put it at the much cooler temperature of this planet, you would get the same combination of gases. That process is more in line with the giant planets in our solar system, and it is different from other sub-Neptunes that have been observed with Webb so far,” said Kempton.
Aside from being hotter than other sub-Neptunes previously observed with Webb, TOI-421 b orbits a Sun-like star. Most of the other sub-Neptunes that have been observed so far orbit smaller, cooler stars called red dwarfs.
Is TOI-421b emblematic of hot sub-Neptunes orbiting Sun-like stars, or is it just that exoplanets are very diverse? To find out, the researchers would like to observe more hot sub-Neptunes to determine if this is a unique case or a broader trend. They hope to gain insights into the formation and evolution of these common exoplanets.
“We’ve unlocked a new way to look at these sub-Neptunes,” said Davenport. “These high-temperature planets are amenable to characterization. So by looking at sub-Neptunes of this temperature, we’re perhaps more likely to accelerate our ability to learn about these planets.”
The team’s findings appear on May 5 in the Astrophysical Journal Letters.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
https://science.nasa.gov/webb
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Ann Jenkins – jenkins@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Hannah Braun – hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Webb Blog: Reconnaissance of Potentially Habitable Worlds with NASA’s Webb
Video: How to Study Exoplanets
Article: Webb’s Impact on Exoplanet Research
Video: How do we learn about a planet’s Atmosphere?
Learn more about exoplanets
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Exoplanets
Exoplanet Stories
Universe
Share
Details
Last Updated May 04, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Exoplanets Goddard Space Flight Center Science & Research The Universe View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.