Jump to content

Artemis in Motion Listening Sessions


Recommended Posts

  • Publishers
Posted
9 Min Read

Artemis in Motion Listening Sessions

The Earth and Moon appear side by side off in the distance while the Orion crew module is in the foreground.
The Earth and Moon appear side by side off in the distance while the Orion crew module is in the foreground.
Credits: NASA

Through Artemis in Motion Sessions, NASA Seeks Moon Storytelling Ideas

As NASA pioneers new technologies and methods for storytelling in space for the benefit of humanity, the agency is hosting Artemis in Motion listening sessions with industry on Thursday, Jan. 23, and Friday, Jan. 24, in Los Angeles.

From the live TV images of humanity’s first steps on the Moon in July of 1969 to the July 2024 two-way 4k transmissions between the International Space Station and an airborne platform, NASA and its partners work on the frontiers of the media landscape to share historic achievements in space exploration.

As part of its Artemis campaign, NASA will land the next American astronauts and first international astronaut on the Moon, explore more of the Moon than ever before, and more.

Through NASA’s listening sessions, invited participants will learn about the agency’s work to tell the Artemis Generation’s lunar exploration story, and discuss new opportunities to highlight the agency’s work.

Today’s advances in technology, storytelling, and production make it possible to share the experience of landing, living, and working on the Moon in ways never before possible. NASA wants to hear how participants would share the extraordinary story of sustained human presence and exploration throughout the solar system, which is rooted across three balanced pillars of science, inspiration, and national posture.

NASA’s OTPS (Office of Technology, Policy, and Strategy), Office of Communications, and the Exploration System Mission Directorate are organizing the sessions in coordination with Science Mission Directorate, and the Space Operations Mission Directorate. 

Overview

With the Artemis campaign, NASA is returning to the Moon to discover the unknown, advance technology, and to learn how to live and work on another world as we prepare for human missions to Mars.

Artemis I successfully completed an uncrewed mission in 2022, and in 2026 Artemis II will next send four crew members to fly around the Moon. As early as mid-2027, Artemis III and subsequent missions will once again bring humans back to the surface of the Moon, landing for the first time where no people have been before: the lunar South Pole region. Like the historic Apollo landings 50 years ago, these missions to the surface of the Moon will provide unparalleled opportunities for motion imagery to inspire and ignite the imagination of people around the world.

NASA and its commercial partners will have integrated cameras on human landing systems and spacesuits, as well as each astronaut carrying their own handheld camera. But we know the modern age offers many creative ways to share these moments, ways to let each of us “ride along” with the crew. NASA is calling on media producers and distributors, studios, imagery companies, space companies, academia, and other interested parties to share their ideas directly with NASA leadership.

Each participant will be asked to make a 30-minute presentation to be delivered in a one-on-one session to the NASA team. Concepts should focus on the Artemis III-V missions (for more on each Artemis missions see NASA’s Moon to Mars Architecture), particularly the time they will spend on the lunar surface. NASA has particular interest in information that informs three key questions:

  • What could supplement NASA’s planned acquisition, communication, distribution, etc. of lunar imagery? (See the FAQ section for an overview of our current plans.)
  • What could be done with the video, photography, and telemetry from the mission(s) to creatively share the return of humans to the Moon in unique and compelling ways?
  • How could NASA collaborate with your organization to help NASA tell the story of Artemis in a unique way?

There are no associated activities (e.g., procurement, cooperative agreement, Space Act agreement, etc.) planned at this time.

Session Details

Beyond the in-person events already planned and depending on demand, NASA may offer additional virtual sessions the week of February 3rd. The agency also is engaging the entertainment community through a private panel presentation at the Motion Picture Academy.

If space allows, participants will be invited to attend an information session on the Artemis campaign and its motion imagery opportunities the morning of Jan. 23. We will provide more information on the optional briefing upon RSVP.

Organizations interested in booking a listening session should email their request to: hq-dl-artemis-in-motion@mail.nasa.gov with the following information by Monday, Jan. 13:

  • Organization name
  • Participant name(s) – limit to three
  • Point of contact email and phone number
  • Request for in-person or virtual session

NASA will set the session schedule and contact organizations directly to confirm all details. No slide decks or digital presentations are permitted during the sessions, although you may bring printed materials.

Please do not share confidential or proprietary information during the sessions. We will not record the sessions, however, NASA staff may take notes.

For more information on the Artemis in Motion listening sessions, please read our FAQ section below. You may send additional questions or requests for guidance on your presentation to hq-dl-artemis-in-motion@mail.nasa.gov. Please note we may add your questions to the FAQ below if deemed helpful to other participants.

Artemis in Motion Listening Sessions FAQ

Q: Does NASA have any specific opportunities it is seeking ideas for?

A: NASA is looking to explore the art of the possible in ideas that supplement, improve, or expand the use of imagery from the lunar surface, and will accept any information on ideas that forward the story of Artemis and that adheres with NASA’s principles. The following list of potential opportunities are examples of what may interest the listening team. These are examples only and not meant to restrict the scope of presentations.

A deployable or separately landed camera system for third-person point-of-view imagery from the lunar surface.

  • A deployable or separately landed camera system for third-person point-of-view imagery from the lunar surface.
  • Non-traditional imagery options including virtual reality, augmented reality, and similar immersive technologies.
  • Collaboration with the NASA+ team to stream a live event to a very large audience.
  • A TV series or production leading up to and around the Artemis missions.
  • An efficient, space-rated encoder to transmit live, high-quality video from the HULC (Handheld Universal Lunar Camera), a ruggedized version of the Nikon Z9.
  • Processing techniques to increase data throughput or recall for ground operations.
  • An approach to increasing the bandwidth available to downlink more or higher quality videos.

Q: What sources of imagery does NASA already plan to have on the lunar surface?

A: NASA expects to have access to at least three sources of imagery on the lunar surface:

  • External and internal video cameras mounted on the Human Landing System.
  • A video camera mounted on each astronaut suit, providing the perspective of the crew members during EVA.
  • The HULC (a modified Nikon Z 9) that will be carried by each crew member to provide real-time photography.

These sources will offer a variety of perspectives, including live video up to UHD resolution. Video will be standard 16:9 format; there are no current plans for stereoscopic video, 360-degree cameras, or spatial video/audio.

NASA currently plans to stream live content via its NASA+ platform as an over-the-top service, as well as provide a backhaul feed to the media. It will also archive and release the photography and video, including any imagery returned from the Moon later with the crew.

Q: How would additional imagery be routed on the Moon and back to Earth?

A: NASA imagery will be routed through the Human Landing System and then downlinked to Earth via the Deep Space Network (DSN). Equipment on the surface of the Moon will transmit imagery to the Human Landing System via Wi-Fi; Artemis III may also include a development test objective for a 4G/LTE connection. We expect limited data bandwidth for any non-critical video links, ranging from single-digit to low double-digit megabits per second. It could be possible for solutions to support increased bandwidth by supporting downlink direct to Earth or through a lunar relay system.

Q: What is the weight limit for new systems brought to the Moon?
A: While there isn’t a specific weight limit, additional imagery systems ideally are low in mass, size, weight, power, and bandwidth due to the limited capacity for the early Artemis missions.

Q: Can an organization propose a production or solution for which they would have exclusive rights?

A: NASA has previously entered into content agreements with organizations that involve some level of exclusivity. However, NASA seeks to benefit all humanity and especially desires solutions that can be shared with the widest possible audience.

Q: Can an organization propose a production that involves content before and after the mission such as content with crew members?

A: Yes. NASA expects the story of a mission to not just include the time on the Moon, but the launch and splashdown; the story of the Artemis campaign to not just include the mission itself but the engineering, the training, the uncrewed test flights, and their impact.

Q: Are listening sessions open to organizations outside the United States?

A: Yes, participation by international entities is encouraged. International space agencies interested in discussing opportunities are encouraged to reach out directly to hq-dl-artemis-in-motion@mail.nasa.gov.

Q: Can NASA help certify or design the hardware for use on the Lunar Surface?

A: Any hardware would need to meet the NASA interface and safety requirements to fly. The specifics of those interfaces, as well as the possibility of NASA support in meeting them, would be discussed in any follow-on discussions or solicitations. (As a reminder, NASA is also interested in concepts that do not require providing and flying new hardware.)

Q: Must any solution be completely autonomously operated or could it link to a suit or the Human Landing System for data and power and/or be operated by a crew member?

A: A solution could provide its own communication system or it could route data transmission to and through the Human Landing System, which could be done via Wi-Fi (Artemis III may also include a development test objective for a 4G/LTE connection). Routing data through or getting power from the suit is likely to not be a feasible option. Crew may be able to set up a camera on the lunar surface, but crew time is too constrained to expect the crew to continue to operate the camera. Human Landing System support for providing power for or exchanging commands with a payload would need to be evaluated on a case-by-case basis.

Q: Will information from the presentations be shared?

A: NASA does not intend to share information from the individual sessions outside of the agency.

Share

Details

Last Updated
Dec 11, 2024
Editor
Bill Keeter

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Kim Shiflett NASA astronauts Christina Koch, Artemis II mission specialist, and Victor Glover, Artemis II pilot, walk on the crew access arm of the mobile launcher in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Tuesday, Aug. 12, 2025.
      On Aug. 11 and 12, teams with the agency’s Exploration Ground Systems Program along with NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, practiced launch day operations if launch occurs at night. They simulated putting their spacesuits on and driving to the launch pad as well as emergency procedures they would use in the unlikely event of an emergency during the launch countdown requiring them to evacuate the launch pad.
      Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars.
      Image credit: NASA/Kim Shiflett
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Artemis II Orion stage adapter, built at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA Media are invited to NASA’s Marshall Space Flight Center in Huntsville, Alabama, at 2 p.m. CDT Thursday, Aug. 14 to view the final piece of space flight hardware for the agency’s SLS (Space Launch System) rocket for the Artemis II mission before it is delivered to NASA’s Kennedy Space Center in Florida. All other elements of the SLS rocket for Artemis II are stacked on mobile launcher 1 in the Vehicle Assembly Building at Kennedy. Artemis II, NASA’s first mission with crew aboard the SLS rocket and Orion spacecraft, is currently scheduled for a 10-day trip around the Moon no later than April 2026.
      The Orion stage adapter, built by NASA Marshall, connects the SLS rocket’s interim cryogenic propulsion stage to NASA’s Orion spacecraft. The small ring structure is the topmost portion of the SLS rocket. The adapter will also carry small payloads, called CubeSats, to deep space.
      Media will have the opportunity to capture images and video and speak to subject matter experts. Along with viewing the adapter for Artemis II, media will be able to see the Orion stage adapter for the Artemis III mission, the first lunar landing at the Moon’s South Pole.
      This event is open to U.S. media, who must confirm their attendance by 12 p.m. CDT Wednesday, Aug. 13, with Jonathan Deal in Marshall’s Office of Communications at jonathan.e.deal@nasa.gov. Media must also report by 1:30 p.m. Thursday, Aug.14 to the Redstone Arsenal Joint Visitor Control Center Gate 9 parking lot, located at the Interstate 565 interchange at Research Park Boulevard, to be escorted to the event.
      Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      For more on SLS, visit: 
      https://www.nasa.gov/humans-in-space/space-launch-system
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256.631.9126
      jonathan.e.deal@nasa.gov

      Share
      Details
      Last Updated Aug 11, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Space Launch System (SLS) Marshall Space Flight Center Explore More
      6 min read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
      NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a…
      Article 3 weeks ago 4 min read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
      Article 3 weeks ago 4 min read NASA’s IXPE Imager Reveals Mysteries of Rare Pulsar
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA/Rad Sinyak The Artemis II crew (from left to right) CSA (Canadian Space Agency) astronaut Jeremy Hansen, and NASA astronauts Christina Koch, Victor Glover, and Reid Wiseman don their Orion Crew Survival System Suits for a multi-day crew module training beginning July 31, 2025, at the agency’s Kennedy Space Center in Florida. Behind the crew, wearing clean room apparel, are members of the Artemis II closeout crew.
      Testing included a suited crew test and crew equipment interface test, performing launch day and simulated orbital activities inside the Orion spacecraft. This series of tests marks the first time the crew entered their spacecraft that will take them around the Moon and back to Earth while wearing their spacesuits.
      Image credit: NASA/Rad Sinyak
      View the full article
    • By NASA
      The Artemis II crew (from left to right) CSA (Canadian Space Agency) Jeremy Hansen, mission specialist; Christina Koch, mission specialist; Victor Glover, pilot; and Reid Wiseman, commander, don their Orion Crew Survival System Suits for a multi-day crew module training beginning Thursday, July 31, 2025 at the agency’s Kennedy Space Center in Florida. Behind the crew, wearing clean room apparel, are members of the Artemis II closeout crew. NASA/Rad Sinyak The first crew slated to fly in NASA’s Orion spacecraft during the Artemis II mission around the Moon early next year entered their spacecraft for a multi-day training at the agency’s Kennedy Space Center in Florida. Crew donned their spacesuits July 31 and boarded Orion to train and experience some of the conditions they can expect on their mission.
      NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen participated in a suited crew test and crew equipment interface test, performing launch day and simulated orbital activities inside Orion.
      Every milestone in the Artemis campaign brings us closer to landing Americans back on the Moon and pushing onward to Mars.
      sEAN dUFFY
      acting NASA Administrator
      “In about six months, Artemis II astronauts will journey around the Moon for the first time in 53 years,” Duffy said. “America rallied behind Apollo because it represented the best of us – now it’s Artemis’ turn. They’re not just carrying a flag – they’re carrying the pride, power, and promise of the United States of America.”
      With Orion powered on, the suited crew test was a close representation of what the crew can expect on launch day. The crew began the day by suiting up inside the spaceport’s Multi-Operation Support Building, donning their Orion crew survival system spacesuits, boarding the zero-emission crew transportation vehicles, and entering Orion, which is currently inside the Multi-Payload Processing Facility, where engineers have loaded its propellants over the course of several weeks.
      Once in Orion, the crew performed several launch day activities, including communications checkouts and suit leak checks. For the first time, the crew was connected to the spacecraft and its communications and life control systems, and all umbilicals were connected while the spacecraft operated on full power.
      Teams simulated several different ground and flight conditions to give the crew more experience managing them in real time. Some of the activities simulated scenarios where the crew was challenged to address potential issues while in space such as leaks and failure of the air revitalization system fan, which is needed to provide oxygen and remove carbon dioxide from the cabin. Getting this hands-on experience and learning how to act fast to overcome potential challenges during flight helps ensure the crew is ready for any scenario.
      The test provides astronauts the ability to train on the actual hardware they will use during flight, allowing them and support teams the opportunity to familiarize themselves with the equipment in configurations very close to what will be experienced during flight. It also allows teams to verify compatibility between the equipment and systems with flight controller procedures, so they can make any final adjustments ahead of launch.
      This test brings together the Artemis II crew and the Orion spacecraft that will carry them to the Moon and back.
      Shawn Quinn
      NASA's Exploration Ground Systems Program manager
      “It signifies the immense amount of work that our operations and development teams put into making sure we are ready for launch.” Quinn said. “They have meticulously planned each operation, timing them to perfection – and now we put it to the test.”
      Exchanging their spacesuits for cleanroom garments for the crew equipment interface test, and with the spacecraft powered off, the crew also performed many of the activities they are likely to do in flight and conducted additional equipment checks. The crew practiced removing and stowing the foot pans on the pilot and commander seats, which will allow them to have more open space in the cabin after launch. They also accessed the stowage lockers and familiarized themselves with cameras, associated cables and mounts, and the environmental control and life support system hardware.
      In addition to getting practical experience with the actual hardware they’ll use in space, they also prepared for life in deep space, reviewing cabin labels, sleep arrangements and checklists, and the hygiene bay.
      Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all. 
      View the full article
    • By NASA
      This artist’s concept of Blue Ghost Mission 4 shows Firefly’s Blue Ghost lunar lander and NASA payloads in the lunar South Pole Region, through NASA’s CLPS (Commercial Lunar Payload Services) initiative.Credit: Firefly Aerospace NASA has awarded Firefly Aerospace of Cedar Park, Texas, $176.7 million to deliver two rovers and three scientific instruments to the lunar surface as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to explore more of the Moon than ever before.
      This delivery is the first time NASA will use multiple rovers and a variety of stationary instruments, in a collaborative effort with the CSA (Canadian Space Agency) and the University of Bern, to help us understand the chemical composition of the lunar South Pole region and discover the potential for using resources available in permanently shadowed regions of the Moon.
      “Through CLPS, NASA is embracing a new era of lunar exploration, with commercial companies leading the way,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “These investigations will produce critical knowledge required for long-term sustainability and contribute to a deeper understanding of the lunar surface, allowing us to meet our scientific and exploration goals for the South Pole region of the Moon for the benefit of all.”
      Under the new CLPS task order, Firefly is tasked with delivering end-to-end payload services to the lunar surface, with a period of performance from Tuesday to March 29, 2030. The company’s lunar lander is targeted to land at the Moon’s South Pole region in 2029.
      This is Firefly’s fifth task order award and fourth lunar mission through CLPS. Firefly’s first delivery successfully landed on the Moon’s near side in March 2025 with 10 NASA payloads. The company’s second mission, targeting a launch in 2026, includes a lunar orbit drop-off of a satellite combined with a delivery to the lunar surface on the far side. Firefly’s third lunar mission will target landing in the Gruithuisen Domes on the near side of the Moon in 2028, delivering six experiments to study that enigmatic lunar volcanic terrain.
      “As NASA sends both humans and robots to further explore the Moon, CLPS deliveries to the lunar South Pole region will provide a better understanding of the exploration environment, accelerating progress toward establishing a long-term human presence on the Moon, as well as eventual human missions to Mars,” said Adam Schlesinger, manager of the CLPS initiative at NASA’s Johnson Space Center in Houston.
      The rovers and instruments that are part of this newly awarded flight include:
      MoonRanger is an autonomous microrover that will explore the lunar surface. MoonRanger will collect images and telemetry data while demonstrating autonomous capabilities for lunar polar exploration. Its onboard Neutron Spectrometer System instrument will study hydrogen-bearing volatiles and the composition of lunar regolith, or soil.
      Lead development organizations: NASA’s Ames Research Center in California’s Silicon Valley, and Carnegie Mellon University and Astrobotic, both in Pittsburgh. Stereo Cameras for Lunar Plume Surface Studies will use enhanced stereo imaging photogrammetry, active illumination, and ejecta impact detection sensors to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will help predict lunar regolith erosion and ejecta characteristics, as bigger, heavier spacecraft and hardware are delivered to the Moon near each other in the future.
      Lead development organization: NASA’s Langley Research Center in Hampton, Virginia.  Laser Retroreflector Array is an array of eight retroreflectors on an aluminum support structure that enables precision laser ranging, a measurement of the distance between the orbiting or landing spacecraft to the reflector on the lander. The array is a passive optical instrument, which functions without power, and will serve as a permanent location marker on the Moon for decades to come.
      Lead development organization: NASA’s Goddard Space Flight Center in Greenbelt, Maryland. A CSA Rover is designed to access and explore remote South Pole areas of interest, including permanently shadowed regions, and to survive at least one lunar night. The CSA rover has stereo cameras, a neutron spectrometer, two imagers (visible to near-infrared), a radiation micro-dosimeter, and a NASA-contributed thermal imaging radiometer developed by the Applied Physics Laboratory. These instruments will advance our understanding of the physical and chemical properties of the lunar surface, the geological history of the Moon, and potential resources such as water ice. It will also improve our understanding of the environmental challenges that await future astronauts and their life support systems.
      Lead development organization: CSA. Laser Ionization Mass Spectrometer is a mass spectrometer that will analyze the element and isotope composition of lunar regolith. The instrument will utilize a Firefly-built robotic arm and Titanium shovel that will deploy to the lunar surface and support regolith excavation. The system will then funnel the sample into its collection unit and use a pulsed laser beam to identify differences in chemistry compared to samples studied in the past, like those collected during the Apollo program. Grain-by-grain analyses will provide a better understanding of the chemical complexity of the landing site and the surrounding area, offering insights into the evolution of the Moon.
      Lead development organization: University of Bern in Switzerland. Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon, and to support human exploration beyond to Mars. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.
      To learn more about CLPS and Artemis, visit:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov
      Nilufar Ramji   
      Johnson Space Center, Houston
      281-483-5111
      nilufar.ramji@nasa.gov
      Share
      Details
      Last Updated Jul 29, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon View the full article
  • Check out these Videos

×
×
  • Create New...