Jump to content

Found: First Actively Forming Galaxy as Lightweight as Young Milky Way


Recommended Posts

  • Publishers
Posted
6 Min Read

Found: First Actively Forming Galaxy as Lightweight as Young Milky Way

Hundreds of overlapping objects at various distances are spread across this field. Galaxies’ colors vary. The majority appear orange, pink, and white, some are shades of orange or blue. Most galaxies appear as fuzzy ovals, but a few have distinctive spiral arms. At the very center is a tiny galaxy nicknamed Firefly Sparkle that looks like a long, angled, dotted line. Smaller companions are nearby.
Hundreds of overlapping objects at various distances are spread across this field. At the very center is a tiny galaxy nicknamed Firefly Sparkle that looks like a long, angled, dotted line. Smaller companions are nearby.
Credits:
NASA, ESA, CSA, STScI, Chris Willott (National Research Council Canada), Lamiya Mowla (Wellesley College), Kartheik Iyer (Columbia University)

For the first time, NASA’s James Webb Space Telescope has detected and “weighed” a galaxy that not only existed around 600 million years after the big bang, but is also similar to what our Milky Way galaxy’s mass might have been at the same stage of development. Other galaxies Webb has detected at this time period are significantly more massive. Nicknamed the Firefly Sparkle, this galaxy is gleaming with star clusters — 10 in all — each of which researchers examined in great detail.

Image A: Firefly Sparkle Galaxy and Companions in Galaxy Cluster MACS J1423 (NIRCam Image)

A frame split horizontally down the middle. At left is a galaxy cluster and background galaxies, showing thousands of overlapping objects at various distances. The background is black. The galaxies’ colors vary, including white, pink, orange, and blue. Most galaxies appear as ovals or dots. Just above center is a bright white oversized oval, a supergiant elliptical galaxy. Around it are many thin, long orange or pink arcs. These are background galaxies that appear stretched and distorted. To the bottom right is the outline of a small box. On the right side is a zoomed in view of this area. There are two smaller circular outlines flanking a larger central oval outline, labeled Firefly Sparkle galaxy. Within it is a long line, pointing from bottom left to top right with 10 circular star clusters in pink, purple, and blue. The circled galaxy to the bottom left is labeled Companion 1 and looks like a bright red dot. At top right, the circled galaxy labeled Companion 2 is lighter red and surrounded by a red disk.
For the first time, astronomers using NASA’s James Webb Space Telescope have identified a galaxy, nicknamed the Firefly Sparkle, that not only is in the process of assembling and forming stars around 600 million years after the big bang, but also weighs about the same as our Milky Way galaxy if we could “wind back the clock” to weigh it as it developed. Two companion galaxies are close by, which may ultimately affect how this galaxy forms and builds mass over billions of years.
NASA, ESA, CSA, STScI, Chris Willott (National Research Council Canada), Lamiya Mowla (Wellesley College), Kartheik Iyer (Columbia University)

“I didn’t think it would be possible to resolve a galaxy that existed so early in the universe into so many distinct components, let alone find that its mass is similar to our own galaxy’s when it was in the process of forming,” said Lamiya Mowla, co-lead author of the paper and an assistant professor at Wellesley College in Massachusetts. “There is so much going on inside this tiny galaxy, including so many different phases of star formation.”

Webb was able to image the galaxy in crisp detail for two reasons. One is a benefit of the cosmos: A massive foreground galaxy cluster radically enhanced the distant galaxy’s appearance through a natural effect known as gravitational lensing. And when combined with the telescope’s specialization in high-resolution infrared light, Webb delivered unprecedented new data about the galaxy’s contents.

Image B: Galaxy Cluster MACS J1423 (NIRCam Image)

Thousands of overlapping objects at various distances are spread across this field, including galaxies in a massive galaxy cluster and distorted background galaxies behind the galaxy cluster. The background of space is black. The galaxies’ colors vary. The majority appear white or pink, some are shades of orange or blue. Most galaxies appear as fuzzy ovals, but a few have distinctive spiral arms. The most distant galaxies are the tiniest and appear as red dots or smudges. Several foreground stars with eight diffraction spikes appear as large as some of the smaller galaxies. Just above center is a very bright white, oversized oval, angled at 45 degrees and pointing to the top left and bottom right. This is a supergiant elliptical galaxy. Immediately around it are many thin, long, orange or pink arcs. They follow invisible concentric circles that curve around the center. These are background galaxies that have been stretched and distorted.
In this image from NASA’s James Webb Space Telescope, thousands of glimmering galaxies are bound together by their own gravity, making up a massive cluster formally classified as MACS J1423. The largest, bright white oval is a supergiant elliptical galaxy. The galaxy cluster acts like a lens, magnifying and distorting the light of objects that lie well behind it, an effect known as gravitational lensing.
NASA, ESA, CSA, STScI, Chris Willott (National Research Council Canada), Lamiya Mowla (Wellesley College), Kartheik Iyer (Columbia University)

“Without the benefit of this gravitational lens, we would not be able to resolve this galaxy,” said Kartheik Iyer, co-lead author and NASA Hubble Fellow at Columbia University in New York. “We knew to expect it based on current physics, but it’s surprising that we actually saw it.”

Mowla, who spotted the galaxy in Webb’s image, was drawn to its gleaming star clusters, because objects that sparkle typically indicate they are extremely clumpy and complicated. Since the galaxy looks like a “sparkle” or swarm of lightning bugs on a warm summer night, they named it the Firefly Sparkle galaxy.

Reconstructing the Galaxy’s Appearance

The research team modeled what the galaxy might have looked like if it weren’t stretched and discovered that it resembled an elongated raindrop. Suspended within it are two star clusters toward the top and eight toward the bottom. “Our reconstruction shows that clumps of actively forming stars are surrounded by diffuse light from other unresolved stars,” said Iyer. “This galaxy is literally in the process of assembling.”

Webb’s data shows the Firefly Sparkle galaxy is on the smaller side, falling into the category of a low-mass galaxy. Billions of years will pass before it builds its full heft and a distinct shape. “Most of the other galaxies Webb has shown us aren’t magnified or stretched, and we are not able to see their ‘building blocks’ separately. With Firefly Sparkle, we are witnessing a galaxy being assembled brick by brick,” Mowla said.

Stretched Out and Shining, Ready for Close Analysis

Since the galaxy is warped into a long arc, the researchers easily picked out 10 distinct star clusters, which are emitting the bulk of the galaxy’s light. They are represented here in shades of pink, purple, and blue. Those colors in Webb’s images and its supporting spectra confirmed that star formation didn’t happen all at once in this galaxy, but was staggered in time.

“This galaxy has a diverse population of star clusters, and it is remarkable that we can see them separately at such an early age of the universe,” said Chris Willott from the National Research Council of Canada’s Herzberg Astronomy and Astrophysics Research Centre, a co-author and the observation program’s principal investigator. “Each clump of stars is undergoing a different phase of formation or evolution.”

The galaxy’s projected shape shows that its stars haven’t settled into a central bulge or a thin, flattened disk, another piece of evidence that the galaxy is still forming.

Image C: Illustration of the Firefly Sparkle Galaxy in the Early Universe (Artist’s Concept)

An illustration of what the Firefly Sparkle galaxy might have looked like when it existed in the early universe. The horizontal frame has a black background. The galaxy is in the middle, beginning in a triangle at the top, forming two wider points toward the lower center, and coming to a rounder point at the bottom, forming a rough parallelogram. There are tiny white stars throughout the galaxy, which appear in hazy layers. There are 10 separate, prominent round star clusters, which each have bright colors. Toward the top is a bright blue star cluster. Below that is a purple star cluster. The majority of the star clusters are close to one another just below center, and appear in oranges, pinks, white, and blue. The star clusters are the brightest sections of the overall galaxy. Its other diffuse areas of white stars are dimmer. At the bottom right are the words, Artist’s Concept.
This artist concept depicts a reconstruction of what the Firefly Sparkle galaxy looked like about 600 million years after the big bang if it wasn’t stretched and distorted by a natural effect known as gravitational lensing. This illustration is based on images and data from NASA’s James Webb Space Telescope.
Illustration: NASA, ESA, CSA, Ralf Crawford (STScI). Science: Lamiya Mowla (Wellesley College), Guillaume Desprez (Saint Mary’s University)

Video: “Firefly Sparkle” Reveals Early Galaxy

‘Glowing’ Companions

Researchers can’t predict how this disorganized galaxy will build up and take shape over billions of years, but there are two galaxies that the team confirmed are “hanging out” within a tight perimeter and may influence how it builds mass over billions of years.

Firefly Sparkle is only 6,500 light-years away from its first companion, and its second companion is separated by 42,000 light-years. For context, the fully formed Milky Way is about 100,000 light-years across — all three would fit inside it. Not only are its companions very close, the researchers also think that they are orbiting one another.

Each time one galaxy passes another, gas condenses and cools, allowing new stars to form in clumps, adding to the galaxies’ masses. “It has long been predicted that galaxies in the early universe form through successive interactions and mergers with other tinier galaxies,” said Yoshihisa Asada, a co-author and doctoral student at Kyoto University in Japan. “We might be witnessing this process in action.”

The team’s research relied on data from Webb’s CAnadian NIRISS Unbiased Cluster Survey (CANUCS), which includes near-infrared images from NIRCam (Near-Infrared Camera) and spectra from the microshutter array aboard NIRSpec (Near-Infrared Spectrograph). The CANUCS data intentionally covered a field that NASA’s Hubble Space Telescope imaged as part of its Cluster Lensing And Supernova survey with Hubble (CLASH) program.

This work has been published on December 11, 2024 in the journal Nature.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

Downloads

Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.

View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.

View/Download the research results from the journal Nature.

Media Contacts

Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Claire Blomecblome@stsci.edu, Christine Pulliamcpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Video: How are Distant Galaxies Magnified Through Gravitational Lensing?

Article: Webb Science: Galaxies Through Time

Article: Spectroscopy 101

Interactive: Learn how the Webb microshutter array (MSA) works

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page

What is a galaxy?

What is the Webb Telescope?

SpacePlace for Kids

En Español

¿Qué es una galaxia?

Ciencia de la NASA

NASA en español 

Space Place para niños

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Today, at the Living Planet Symposium, ESA revealed the first stunning images from its groundbreaking Biomass satellite mission – marking a major leap forward in our ability to understand how Earth’s forests are changing and exactly how they contribute to the global carbon cycle. But these inaugural glimpses go beyond forests. Remarkably, the satellite is already showing potential to unlock new insights into some of Earth’s most extreme environments.
      View the full article
    • By European Space Agency
      Image: ESA astronaut Sophie Adenot’s first mission to the International Space Station now has a name: εpsilon. The mission name and patch were announced today at the Paris Air Show by ESA Director General Josef Aschbacher, French President Emmanuel Macron, and Sophie Adenot, who joined remotely from the United States, where she is training for her spaceflight.
      Sophie Adenot is one of the five astronauts selected from ESA’s most recent astronaut class of 2022. Following the successful completion of their basic training in spring 2024, Josef Aschbacher announced during the Space Council in Brussels that Sophie and fellow graduate Raphaël Liégois had been assigned their first missions to the International Space Station, currently planned for 2026.
      The εpsilon name and patch reflect the power of small, yet impactful contributions and how multiple parts unite to create a whole.
      In mathematics, “ε” represents something small. In the extensive collaborative effort of space exploration, involving thousands of participants, all roles, including the astronaut's role, stay small yet meaningful.
      The hummingbird, central to the patch, embodies this idea; though one of Earth’s smallest birds, it plays a crucial role in the jungle’s ecosystem, pollinating numerous plants.
      Encircling the patch is a ring of small dots, symbolising the many small contributions that together make great achievements possible. All these little actions that can be coordinated to form a circle and close the loop. At the top, three of these dots are coloured – blue, white, and red – representing Sophie’s home country, France, and ESA’s exploration destinations: Earth, the Moon, and Mars.
      The name εpsilon, being the fifth Greek letter and the fifth brightest star of the Leo constellation, also follows the French tradition to name human spaceflight missions after celestial bodies. It also pays tribute to the five career astronauts of ESA’s 2022 class. 
      Three lines emerge from the “i” of the εpsilon, shaping the tail of a shooting star, a poetic reminder that dreams keep us alive.
      At the base of the patch lies a rounded blue shape, representing Earth’s surface and its natural beauty: mountains, forests and landscapes that Sophie enjoys exploring. It serves as a reminder of our motivation for spaceflight: to explore, learn, and return with this knowledge to benefit life on Earth.
      From an emotional perspective, the same message is conveyed. In life's intricate tapestry, small threads contribute to create the most beautiful patterns. A kind word, a gentle smile, a moment of patience - these seemingly insignificant actions can transform lives and shape destinies. This patch invites each of us to embrace the potential of our smallest actions as they ripple outward, touching hearts and inspiring souls.
      During her εpsilon mission, Sophie will perform numerous scientific experiments, many of them European, conduct medical research, support Earth observation and contribute to operations and maintenance aboard the International Space Station.
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Studies Small but Mighty Galaxy
      This NASA/ESA Hubble Space Telescope features the nearby galaxy NGC 4449. ESA/Hubble & NASA, E. Sabbi, D. Calzetti, A. Aloisi This portrait from the NASA/ESA Hubble Space Telescope puts the nearby galaxy NGC 4449 in the spotlight. The galaxy is situated just 12.5 million light-years away in the constellation Canes Venatici (the Hunting Dogs). It is a member of the M94 galaxy group, which is near the Local Group of galaxies that the Milky Way is part of.
      NGC 4449 is a dwarf galaxy, which means that it is far smaller and contains fewer stars than the Milky Way. But don’t let its small size fool you — NGC 4449 packs a punch when it comes to making stars! This galaxy is currently forming new stars at a much faster rate than expected for its size, which makes it a starburst galaxy. Most starburst galaxies churn out stars mainly in their centers, but NGC 4449 is alight with brilliant young stars throughout. Researchers believe that this global burst of star formation came about because of NGC 4449’s interactions with its galactic neighbors. Because NGC 4449 is so close, it provides an excellent opportunity for Hubble to study how interactions between galaxies can influence the formation of new stars.
      Hubble released an image of NGC 4449 in 2007. This new version incorporates several additional wavelengths of light that Hubble collected for multiple observing programs. These programs encompass an incredible range of science, from a deep dive into NGC 4449’s star-formation history to the mapping of the brightest, hottest, and most massive stars in more than two dozen nearby galaxies.
      The NASA/ESA/CSA James Webb Space Telescope has also observed NGC 4449, revealing in intricate detail the galaxy’s tendrils of dusty gas, glowing from the intense starlight radiated by the flourishing young stars.
      Text Credit: ESA/Hubble
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Jun 20, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Irregular Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Galaxy Details and Mergers



      Hubble’s Night Sky Challenge


      View the full article
    • By European Space Agency
      Today, the European Space Agency’s Proba-3 mission unveils its first images of the Sun’s outer atmosphere – the solar corona. The mission’s two satellites, able to fly as a single spacecraft thanks to a suite of onboard positioning technologies, have succeeded in creating their first ‘artificial total solar eclipse’ in orbit. The resulting coronal images demonstrate the potential of formation flying technologies, while delivering invaluable scientific data that will improve our understanding of the Sun and its enigmatic atmosphere.
      View the full article
    • By European Space Agency
      Video: 00:01:40 Proba-3 artificially created what is normally a rare natural phenomenon: a total solar eclipse.
      In a world first, ESA’s Proba-3 satellites flew in perfect formation, blocking the Sun’s bright disc to reveal its fiery corona. This enigmatic outer layer burns millions of degrees hotter than the Sun’s surface and drives the solar storms that can disrupt life on Earth.
      With its first artificial eclipse, Proba-3 has captured detailed images of this mysterious region, offering scientists new insights into our star’s behaviour.
      Read the full story here.
      Access the related broadcast qality footage. 
      View the full article
  • Check out these Videos

×
×
  • Create New...