Jump to content

3D Printable Bioreactor for Deep Space Food Production


Recommended Posts

  • Publishers
Posted
Astronaut working on the ISS.

NASA’s Synthetic Biology Project is turning to the 3D printing experts in the GrabCAD community for ideas and or designs that could lead to the ability to reuse and recycle small scale bioreactors to reduce the mass and volume requirements for deep space missions. Ideally, designs that could be printed using a 3D printer, using recyclable plastics, or a design using cleanable and reusable materials can be created.

Award: $7,000 in total prizes

Open Date: December 2, 2024

Close Date: February 24, 2025

For more information, visit: https://grabcad.com/challenges/3d-printable-bioreactor-for-deep-space-food-production

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Space Systems Command activated a new Systems Delta to support the BMC3I Program Executive Office portfolio. This activation synchronizes acquisition efforts for critical space system capabilities and works together with Mission Deltas to improve mission readiness.

      View the full article
    • By Space Force
      The U.S. Space Force published its new Space Force Instruction (SPFI) 36-2903, Dress and Appearance, a comprehensive, service-specific policy consolidating all uniform and grooming guidance into a single document.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      GRX-810 is a new metal alloy developed by NASA for 3D printing parts that can withstand the extreme temperatures of rocket engines, allowing affordable printing of high-heat parts.NASA Until now, additive manufacturing, commonly known as 3D printing, of engine components was limited by the lack of affordable metal alloys that could withstand the extreme temperatures of spaceflight. Expensive metal alloys were the only option for 3D printing engine parts until NASA’s Glenn Research Center in Cleveland, Ohio, developed the GRX-810 alloy.

      The primary metals in the GRX-810 alloy include nickel, cobalt, and chromium. A ceramic oxide coating on the powdered metal particles increases its heat resistance and improves performance. Known as oxide dispersion strengthened (ODS) alloys, these powders were challenging to manufacture at a reasonable cost when the project started. 

      However, the advanced dispersion coating technique developed at Glenn employs resonant acoustic mixing. Rapid vibration is applied to a container filled with the metal powder and nano-oxide particles. The vibration evenly coats each metal particle with the oxide, making them inseparable. Even if a manufactured part is ground down to powder and reused, the next component will have the qualities of ODS.

      The benefits over common alloys are significant – GRX-10 could last up to a year at 2,000°F under stress loads that would crack any other affordable alloy within hours. Additionally, 3D printing parts using GRX-810 enables more complex shapes compared to metal parts manufactured with traditional methods.

      Elementum 3D, an Erie, Colorado-based company, produces GRX-810 for customers in quantities ranging from small batches to over a ton. The company has a co-exclusive license for the NASA-patented alloy and manufacturing process and continues to work with the agency under a Space Act Agreement to improve the material.

      “A material under stress or a heavy load at high temperature can start to deform and stretch almost like taffy,” said Jeremy Iten, chief technical officer with Elementum 3D. “Initial tests done on the large-scale production of our GRX-810 alloy showed a lifespan that’s twice as long as the small-batch material initially produced, and those were already fantastic.”

      Commercial space and other industries, including aviation, are testing GRX-810 for additional applications. For example, one Elementum 3D customer, Vectoflow, is testing a GRX-810 flow sensor. Flow sensors monitor the speed of gases flowing through a turbine, helping engineers optimize engine performance. However, these sensors can burn out in minutes due to extreme temperatures. Using GRX-810 flow sensors could improve airplane fuel efficiency, reduce emissions and hardware replacements.

      Working hand-in-hand with industry, NASA is driving technology developments that are mutually beneficial to the agency and America’s space economy. Learn more: https://spinoff.nasa.gov/
      Read More Share
      Details
      Last Updated Aug 15, 2025 Related Terms
      Technology Transfer & Spinoffs Glenn Research Center Spinoffs Technology Transfer Explore More
      2 min read NASA Seeks Industry Feedback on Fission Surface Power
      Article 22 hours ago 2 min read NASA Glenn Earns Commercial Invention of the Year Award
      Article 1 day ago 2 min read NASA Glenn Shoots for the Stars During WNBA All-Star Weekend
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Glenn Research Center
      3D-Printed Habitat Challenge
      View the full article
    • By NASA
      On January 7, 2021, NASA astronaut Kate Rubins serviced samples for Bacterial Adhesion and Corrosion. This investigation looked at how spaceflight affects the formation of microbial biofilms and tested a silver-based disinfectant.NASA This November marks a quarter century of continuous human presence aboard the International Space Station, which has served as a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including human missions to the Moon and Mars. To kick off the orbiting laboratory’s silver 25th anniversary countdown, here are a few silver-themed science investigations that have advanced research and space exploration.
      Antimicrobial properties
      Silver has been used for centuries to fight infection, and researchers use its unique properties to mitigate microbial growth aboard the space station. Over time, microbes form biofilms, sticky communities that can grow on surfaces and cause infection. In space, biofilms can become resistant to traditional cleaning products and could infect water treatment systems, damage equipment, and pose a health risk to astronauts. The Bacterial Adhesion and Corrosion investigation studied the bacterial genes that contribute to the formation of biofilms and tested whether a silver-based disinfectant could limit their growth.
      Another experiment focused on the production of silver nanoparticles aboard the space station. Silver nanoparticles have a bigger surface-to-volume ratio, allowing silver ions to come in contact with more microbes, making it a more effective antimicrobial tool to help protect crew from potential infection on future space missions. It also evaluated whether silver nanoparticles produced in space are more stable and uniform in size and shape, characteristics that could further enhance their effectiveness.
      Wearable tech
      Silver is a high-conductivity precious metal that is very malleable, making it a viable option for smart garments. NASA astronauts aboard the orbiting laboratory tested a wearable monitoring vest with silver-coated sensors to record heart rates, cardiac mechanics, and breathing patterns while they slept. This smart garment is lightweight and more comfortable, so it does not disturb sleep quality. The data collected provided valuable insight into improving astronauts’ sleep in space.
      Silver crystals
      In microgravity, there is no up or down, and weightlessness does not allow particles to settle, which impacts physical and chemical processes. Researchers use this unique microgravity environment to grow larger and more uniform crystals unaffected by the force of Earth’s gravity or the physical processes that would separate mixtures by density. The NanoRacks-COSMOS investigation used the environment aboard the station to grow and assess the 3D structure of silver nitrate crystals. The molecular structure of these superior silver nitrate crystals has applications in nanotechnology, such as creating silver nanowires for nanoscale electronics.
      Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      Share
      Details
      Last Updated Aug 14, 2025 Related Terms
      ISS Research Humans in Space International Space Station (ISS)
      View the full article
    • By Amazing Space
      🔴 Live Now: 24/7 NASA Live Stream of Earth from Space (Seen From The ISS)
  • Check out these Videos

×
×
  • Create New...