Jump to content

Hubble Discovers New Class of Gravitational Lens for Probing the Structure of the Cosmos


Recommended Posts

Posted
low_STSCI-H-p9543a-k-1340x520.png

The Hubble telescope has discovered a new, distant class of quadruple or cross-shaped gravitational lenses. The new class of objects might eventually provide astronomers with a powerful "magnifying glass" for probing a variety of characteristics of the universe: the distribution of dark matter, the abundance of super-massive black holes, and the eventual fate of the universe.

In Hubble pictures of two such objects, astronomers have found four images of a faraway galaxy [the blue blobs] gathered around a red elliptical galaxy. A gravitational lens is produced by a massive object's enormous gravitational field, which bends light to magnify, brighten, and distort the image of a more distant object.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      ESA/Hubble & NASA, M. J. Koss, A. J. Barth The light that the NASA/ESA Hubble Space Telescope collected to create this image reached the telescope after a journey of 250 million years. Its source was the spiral galaxy UGC 11397, which resides in the constellation Lyra (The Lyre). At first glance, UGC 11397 appears to be an average spiral galaxy: it sports two graceful spiral arms that are illuminated by stars and defined by dark, clumpy clouds of dust.
      What sets UGC 11397 apart from a typical spiral lies at its center, where a supermassive black hole containing 174 million times the mass of our Sun grows. As a black hole ensnares gas, dust, and even entire stars from its vicinity, this doomed matter heats up and puts on a fantastic cosmic light show.
      Material trapped by the black hole emits light from gamma rays to radio waves, and can brighten and fade without warning. But in some galaxies, including UGC 11397, thick clouds of dust hide much of this energetic activity from view in optical light. Despite this, UGC 11397’s actively growing black hole was revealed through its bright X-ray emission — high-energy light that can pierce the surrounding dust. This led astronomers to classify it as a Type 2 Seyfert galaxy, a category used for active galaxies whose central regions are hidden from view in visible light by a donut-shaped cloud of dust and gas.
      Using Hubble, researchers will study hundreds of galaxies that, like UGC 11397, harbor a supermassive black hole that is gaining mass. The Hubble observations will help researchers weigh nearby supermassive black holes, understand how black holes grew early in the universe’s history, and even study how stars form in the extreme environment found at the very center of a galaxy.
      Text credit: ESA
      Image credit: ESA/Hubble & NASA, M. J. Koss, A. J. Barth
      View the full article
    • By NASA
      Astrophysics Science Video Producer – Goddard Space Flight Center
      Growing up in Detroit with a camera in her hand, Sophia Roberts — now an award-winning astrophysics science video producer—never imagined that one day her path would wind through clean rooms, vacuum chambers, and even a beryllium mine. But framing the final frontier sometimes requires traveling through some of Earth’s less-explored corners.
      Sophia Roberts is an astrophysics Science video producer at NASA’s Goddard Space Flight Center in Greenbelt, Md. She films space hardware assembly and explains complicated topics, weaving science and art together.Credit: Courtesy of Sophia Roberts Sophia received her first camera from her father, a photography enthusiast, when she was just five or six years old. “I’ve basically been snapping away ever since!” she says. 
      With a natural curiosity and enthusiasm for science, Sophia pursued a degree in biology at Oberlin College in Ohio. There, she discovered that she could blend her two passions.
      “I often lingered in lab sessions, not to finish an experiment but to photograph it,” Sophia says. “I had an epiphany at the beginning of class one day, which always opened with clips from BBC nature documentaries. I decided right then that I would be one of the people who make those videos one day.”
      Part of Sophia’s role currently involves documenting NASA’s Nancy Grace Roman Space Telescope, which is taking shape and being tested at NASA Goddard. She captured a cosmic selfie while photographing the telescope’s primary mirror, which was designed and built by L3Harris Technologies in Rochester, New York, before it was integrated with other components.Credit: NASA/Sophia Roberts She initially thought that meant wildlife filmmaking—perched in a blind on a mountainside, waiting hours for an animal to appear. That dream led her to Montana State University, where she learned to blend scientific rigor with visual storytelling through their science and natural history filmmaking master’s program.
      While completing her degree, Sophia worked as a traveling presenter for the Montana Space Grant Consortium. “I was mainly giving presentations about NASA missions and showing kids beautiful images of space,” she says. “That was my first true introduction to NASA. I loved being able to watch the children’s eyes light up when they saw what’s out there in space.”
      Sophia then completed an internship at the Smithsonian’s National Museum of Natural History while completing her thesis. Once she graduated, she landed a year-long fellowship at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, as an Earth science news fellow. In this role, she focused on packaging up stories through satellite imagery and explanations. 
      Sophia holds a Webby award she, Mike McClare (left), and Michael Starobin (right) won for their broadcasts of the James Webb Space Telescope’s launch, deployment, and first images.Credit: James Hartley She leaned into her videography skills in her next role, as part of NASA’s James Webb Space Telescope team. 
      “Webb is one of my great loves in life,” she says. “I learned to negotiate with engineers for the perfect shot, navigate NASA’s protocols, and work with mission partners. I only spent five years on Webb, but it feels like it was half my life. Still—it was everything.”
      That mission took her to some unforgettable places, like a mine in Delta, Utah, where raw material for Webb’s mirrors was unearthed. “It was this giant, spiral pit where they were mining beryllium at just 0.02% concentration,” Sophia says. The process was as otherworldly as the location.
      In 2021, Sophia traveled to Delta, Utah to capture behind-the-scenes footage of raw material for the James Webb Space Telescope’s mirrors being unearthed. In this gif, a drone captures an aerial view of the site.Credit: Scott Rogers She also documented thermal vacuum testing at NASA’s Johnson Space Center in Houston in a giant pill-shaped chamber with a 40-foot round door. “I had to take confined space training to crawl around in the area underneath the chamber,” she says. “It felt like spelunking.”
      Once Webb launched, Sophia pivoted to covering many of NASA’s smaller astrophysics missions along with the upcoming Nancy Grace Roman Space Telescope. These days, she can often be found gowned up in a “bunny suit” in the largest clean room at Goddard to document space telescope assembly, or in a studio recording science explanations. 
      Sophia stands in the largest clean room at Goddard, where she documents space hardware coming together. Credit: NASA/Chris Gunn “I love capturing the visual stories and helping fill in the gaps to help people understand NASA research,” Sophia says. “I try to focus on the things that will get people excited about the science so they’ll stop scrolling to find out more.”
      For Sophia, the process is often as exhilarating as the result. “I love venturing out to remote places where science is being done,” she says. “I’d love to film a balloon launch in Antarctica someday!”
      Jacob Pinter (left), host of NASA’s Curious Universe Podcast, leads a discussion with Sophia Roberts (center), a NASA video producer who documented the Webb project, and Paul Geithner (right), former deputy project manager for NASA’s James Webb Space Telescope, following a screening of the new NASA+ documentary “Cosmic Dawn: The Untold Story of the James Webb Space Telescope,” Wednesday, June 11, 2025, at the Greenbelt Cinema in Greenbelt, Md. Featuring never-before-seen footage, Cosmic Dawn offers an unprecedented glimpse into Webb’s assembly, testing, and launch. Credit: NASA/Joel Kowsky To others who dream of pursuing a similar career, Sophia recommends diving in headfirst. “With cameras readily available and free online platforms, it’s never been easier to get into the media,” she says. “You just have to be careful to research your topic and sources, making sure you really know what you’re sharing and understand that science is always evolving as we learn more.” And Sophia emphasizes how important storytelling is for conveying information, especially when it’s as complex as astrophysics. “Studying science is wonderful, but I also think helping people visualize it is magical.” 
      By Ashley Balzer
      NASA’s Goddard Space Flight Center in Greenbelt, Md.
      Share
      Details
      Last Updated Jun 27, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard James Webb Space Telescope (JWST) Nancy Grace Roman Space Telescope People of NASA View the full article
    • By European Space Agency
      Video: 00:04:13 Daniel Neuenschwander, ESA head of Space and Robotic Exploration, explains that Ignis mission will include an ambitious technological and scientific programme with several experiments led by ESA and proposed by the Polish space industry.
      On 26 June 2025, ESA project astronaut Sławosz Uznański-Wiśniewski from Poland and his crewmates arrived to the International Space Station on the Axiom-4 mission (Ax-4).
      The Polish project astronaut is the second of a new generation of European astronauts to fly on a commercial human spaceflight opportunity with Axiom Space.
      View the full article
    • By NASA
      2 min read
      Hubble Captures an Active Galactic Center
      This Hubble image shows the spiral galaxy UGC 11397. ESA/Hubble & NASA, M. J. Koss, A. J. Barth The light that the NASA/ESA Hubble Space Telescope collected to create this image reached the telescope after a journey of 250 million years. Its source was the spiral galaxy UGC 11397, which resides in the constellation Lyra (The Lyre). At first glance, UGC 11397 appears to be an average spiral galaxy: it sports two graceful spiral arms that are illuminated by stars and defined by dark, clumpy clouds of dust.
      What sets UGC 11397 apart from a typical spiral lies at its center, where a supermassive black hole containing 174 million times the mass of our Sun grows. As a black hole ensnares gas, dust, and even entire stars from its vicinity, this doomed matter heats up and puts on a fantastic cosmic light show.
      Material trapped by the black hole emits light from gamma rays to radio waves, and can brighten and fade without warning. But in some galaxies, including UGC 11397, thick clouds of dust hide much of this energetic activity from view in optical light. Despite this, UGC 11397’s actively growing black hole was revealed through its bright X-ray emission — high-energy light that can pierce the surrounding dust. This led astronomers to classify it as a Type 2 Seyfert galaxy, a category used for active galaxies whose central regions are hidden from view in visible light by a donut-shaped cloud of dust and gas.
      Using Hubble, researchers will study hundreds of galaxies that, like UGC 11397, harbor a supermassive black hole that is gaining mass. The Hubble observations will help researchers weigh nearby supermassive black holes, understand how black holes grew early in the universe’s history, and even study how stars form in the extreme environment found at the very center of a galaxy.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Jun 27, 2025 Related Terms
      Hubble Space Telescope Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Galaxy Details and Mergers



      Hubble’s Night Sky Challenge


      View the full article
    • By European Space Agency
      At the Living Planet Symposium, attendees have been hearing how ESA’s Next Generation Gravity Mission could provide the first opportunity to directly track a vital ocean circulation system that warms our planet – but is now weakening, risking a possible collapse with far-reaching consequences.
      View the full article
  • Check out these Videos

×
×
  • Create New...