Jump to content

NASA’s ASTRO CAMP – and its Impact – Continues to Grow in FY2024


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

When it comes to NASA’s ASTRO CAMP®, the numbers – and impact – of the initiative to help students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics) just continue to grow and grow and grow.

As in recent years, the NASA ASTRO CAMP® Community Partners (ACCP) program surpassed previous milestone marks in fiscal year 2024 by partnering with 373 community sites, including 50 outside the United States, to inspire youth, families, and educators. Participants included students from various population segments, focusing on students from underrepresented groups, accessibility for differently-abled students, and reaching under-resourced urban and rural settings.

“This year has been extremely impactful for the students at ACCP collaborating partner sites,” said Kelly Martin-Rivers, principal investigator for NASA’s ACCP. “A particular highlight was being a part of NASA’s focus on the solar eclipses of 2024, supporting over 42,000 students at 52 NASA ACCP events. Supporting more and more exciting research and activities by the Science Activation grantees and Globe citizen scientists also continues to bring hands-on experiences directly to students across the country and around the world.”

In the most recent year, the NASA ACCP partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine. Overall, almost 150,000 students took part in the program, a 30% increase from fiscal year 2023. In addition, almost 107,000 students took part in special STEM activities, an increase of 43.6% from the previous year’s total of more than 74,000. ACCP trained 1,454 facilitators during Educator Professional Development sessions as well, representing an increase of 25.3% from the prior year.

Taken together, the total NASA ACCP impact exceeded a quarter of a million (257,765) people.

As part of the NASA Science Mission Directorate Science Activation program, ACCP continues to make strides in bridging disparities and breaking barriers in STEM. Demographically, the initiative reached a range of ethnic and multiethnic groups. One-third of participants were African American, with another 13% identified as Hispanic. Participants were almost equally divided between male (52%) and female (48%).

In terms of age, 38% of participants were elementary school students. Another 30% were middle school aged, with the remaining 38% high school students. In a final breakdown, more than 42,000 of the participants were impacted during 52 NASA ACCP solar eclipse events in the spring of 2024.

ACCP activities offer real-world opportunities for students to enhance scientific understanding and contribute to NASA science missions, while also inspiring lifelong learning. The ACCP theme was “NASA Science … Fire to Water to Ice and Beyond!” The program featured materials and activities related to NASA science missions, astrophysics, heliophysics, Earth science, and planetary science.

The unique methodology teaches students to work collaboratively to complete missions and provides trained community educators to implement the themed NASA modules, developed by the ACCP team, seated at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.

ASTRO CAMP began at NASA Stennis as a single one-week camp in the 1990s. Since then, it has developed into several adaptable models for schools, museums, universities, libraries, and youth service organizations, enabling a worldwide expansion.

For more information about becoming a NASA ASTRO CAMP Collaborative Community Partner, contact: Kelly Martin-Rivers at kelly.e.martin-rivers@nasa.gov or 228-688-1500; or Maria Lott at maria.l.lott@nasa.gov or 228-688-1776.

For more on the ASTRO CAMP Collaborative Community Partner Program, visit:

https://www.nasa.gov/stennis/stem-engagement-at-stennis/nasa-accp/.

Share

Details

Last Updated
Dec 06, 2024
Editor
NASA Stennis Communications
Contact
C. Lacy Thompson
Location
Stennis Space Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A child of the Space Shuttle Program, Jeni Morrison grew up walking the grounds of NASA’s Johnson Space Center in Houston with her parents and listening to family stories about human spaceflight. 
      Now, with more than 15 years at NASA, Morrison serves as one of Johnson’s Environmental Programs managers. She ensures the center complies with laws that protect its resources by overseeing regulatory compliance for cultural and natural resources, stormwater and drinking water programs, and the National Environmental Policy Act. She also safeguards Johnson’s historic legacy as Johnson’s Cultural Resources manager. 
      Jeni Morrison in the mall area at NASA’s Johnson Space Center in Houston, where employees often see local wildlife, including turtles, birds, deer, and the occasional alligator. “I make sure our actions comply with the National Historic Preservation act, since the center is considered a historic district with two National Historic Landmarks onsite,” Morrison said. “I make sure we respect and document Johnson’s heritage while paving the way for new efforts and mission objectives.” 
      Morrison takes pride in finding solutions that increase efficiency while protecting resources. One example was a project with Johnson’s Geographic Information System team to create an interactive material and chemical spill plan map. The new system helps responders quickly trace spill paths above and underground to deploy resources faster, reducing cleanup costs and minimizing environmental impacts. 
      “Every improvement we make not only saves time and resources, but strengthens our ability to support NASA’s mission,” she said.  
      By the very nature of our work, NASA makes history all the time. That history is important for all people, both to remember the sacrifices and accomplishments of so many, but also to ensure we don’t repeat mistakes as we strive for even bolder achievements.
      Jeni Morrison
      Environmental Program Manager
      Jeni Morrison presents an overview of environmental compliance and center initiatives to employees at NASA’s Johnson Space Center in 2014. NASA/Lauren Harnett For Morrison, success often comes down to teamwork. She has learned to adapt her style to colleagues’ needs to strengthen collaboration.  
      “By making the effort to accommodate others’ communication styles and learn from different perspectives, we create better, more efficient work,” she said. “Thankfully, so many people here at NASA are willing to teach and to share their experiences.”  
      Her message to the Artemis Generation is simple: Always keep learning! 
      “You never know when a side conversation could give you an answer to a problem you are facing down the line,” she said. “You must be willing to ask questions and learn something new to find those connections.” 
      Jeni Morrison (second from right) with the Biobased Coolant Project Team at NASA’s Johnson Space Center in 2018. The team tested biobased metalworking coolants and identified a product that outperformed petroleum-based options, meeting flight hardware specifications while reducing waste disposal costs and labor hours. Even as a young child visiting NASA Johnson, I could feel the sense of adventure, accomplishment, and the drive to reach new heights of human capability. I realize that those experiences gave me a fascination with learning and an inherent need to find ways to do things better.
      jENI mORRISON
      Environmental Program Manager
      Her passion for learning and discovery connects to a family tradition at NASA. Her grandfather contributed to multiple Apollo missions, including helping solve the oxygen tank malfunction on Apollo 13. Her mother worked at the center transcribing astronaut recordings and writing proposals, and her father flew experiments aboard the space shuttle and International Space Station. Morrison’s sister and extended family also worked at Johnson.  
      Now her son is growing up on the center grounds while attending the JSC Child Care Center. “As the fourth generation to be at Johnson, he is already talking about how he loves science and can’t wait to do his own experiments,” she said. 
      For Morrison, carrying that family legacy forward through environmental stewardship is a privilege. “Being able to contribute to NASA’s mission through environmental compliance feels like the best of both worlds for me,” Morrison said. “It combines my love of science and NASA with my drive to find more efficient ways to operate while protecting this incredible site and everything it represents.” 
      Explore More
      4 min read Mark Cavanaugh: Integrating Safety into the Orion Spacecraft 
      Article 1 month ago 6 min read She Speaks for the Samples: Meet Dr. Juliane Gross, Artemis Campaign Sample Curation Lead 
      Article 5 months ago 5 min read Johnson’s Jason Foster Recognized for New Technology Reporting Record
      Article 3 months ago
      View the full article
    • By NASA
      5 min read
      Close-Up Views of NASA’s DART Impact to Inform Planetary Defense
      Photos taken by the Italian LICIACube, short for the LICIA Cubesat for Imaging of Asteroids. These offer the closest, most detailed observations of NASA’s DART (Double Asteroid Redirection Test) impact aftermath to date. The photo on the left was taken roughly 2 minutes and 40 seconds after impact, as the satellite flew past the Didymos system. The photo on the right was taken 20 seconds later, as LICIACube was leaving the scene. The larger body, near the top of each image is Didymos. The smaller body in the lower half of each image is Dimorphos, enveloped by the cloud of rocky debris created by DART’s impact. NASA/ASI/University of Maryland On Sept. 11, 2022, engineers at a flight control center in Turin, Italy, sent a radio signal into deep space. Its destination was NASA’s DART (Double Asteroid Redirection Test) spacecraft flying toward an asteroid more than 5 million miles away.
       
      The message prompted the spacecraft to execute a series of pre-programmed commands that caused a small, shoebox-sized satellite contributed by the Italian Space Agency (ASI), called LICIACube, to detach from DART.
       
      Fifteen days later, when DART’s journey ended in an intentional head-on collision with near-Earth asteroid Dimorphos, LICIACube flew past the asteroid to snap a series of photos, providing researchers with the only on-site observations of the world’s first demonstration of an asteroid deflection.
       
      After analyzing LICIACube’s images, NASA and ASI scientists report on Aug. 21 in the Planetary Science Journal that an estimated 35.3 million pounds (16 million kilograms) of dust and rocks spewed from the asteroid as a result of the crash, refining previous estimates that were based on data from ground and space-based observations.
       
      While the debris shed from the asteroid amounted to less than 0.5% of its total mass, it was still 30,000 times greater than the mass of the spacecraft. The impact of the debris on Dimorphos’ trajectory was dramatic: shortly after the collision, the DART team determined that the flying rubble gave Dimorphos a shove several times stronger than the hit from the spacecraft itself.
       
      “The plume of material released from the asteroid was like a short burst from a rocket engine,” said Ramin Lolachi, a research scientist who led the study from NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
       
      The important takeaway from the DART mission is that a small, lightweight spacecraft can dramatically alter the path of an asteroid of similar size and composition to Dimorphos, which is a “rubble-pile” asteroid — or a loose, porous collection of rocky material bound together weakly by gravity.
       
      “We expect that a lot of near-Earth asteroids have a similar structure to Dimorphos,” said Dave Glenar, a planetary scientist at the University of Maryland, Baltimore County, who participated in the study. “So, this extra push from the debris plume is critical to consider when building future spacecraft to deflect asteroids from Earth.”
      The tail of material that formed behind Dimorphos was prominent almost 12 days after the DART impact, giving the asteroid a comet-like appearance, as seen in this image captured by NASA’s Hubble Space Telescope in October 2022. Hubble’s observations were made from roughly 6.8 million miles away. NASA, ESA, STScI, Jian-Yang Li (PSI); Image Processing: Joseph DePasquale DART’s Star Witness
      NASA chose Dimorphos, which poses no threat to Earth, as the mission target due to its relationship with another, larger asteroid named Didymos. Dimorphos orbits Didymos in a binary asteroid system, much like the Moon orbits Earth. Critically, the pair’s position relative to Earth allowed astronomers to measure the duration of the moonlet’s orbit before and after the collision.
       
      Ground and space-based observations revealed that DART shortened Dimorphos’ orbit by 33 minutes. But these long-range observations, made from 6.8 million miles (10.9 million kilometers) away, were too distant to support a detailed study of the impact debris. That was LICIACube’s job.
      After DART’s impact, LICIACube had just 60 seconds to make its most critical observations. Barreling past the asteroid at 15,000 miles (21,140 kilometers) per hour, the spacecraft took a snapshot of the debris roughly once every three seconds. Its closest image was taken just 53 miles (85.3 km) from Dimorphos’ surface.
       
      The short distance between LICIACube and Dimorphos provided a unique advantage, allowing the cubesat to capture detailed images of the dusty debris from multiple angles.
       
      The research team studied a series of 18 LICIAcube images. The first images in the sequence showed LICIACube’s head-on approach. From this angle, the plume was brightly illuminated by direct sunlight. As the spacecraft glided past the asteroid, its camera pivoted to keep the plume in view.
      This animated series of images was taken by a camera aboard LICIACube 2 to 3 minutes after DART crashed into Dimorphos. As LICIACube made its way past the binary pair of asteroids Didymos, the larger one on top, and Dimorphos, the object at the bottom. The satellite’s viewing angle changed rapidly during its flyby of Dimorphos, allowing scientists o get a comprehensive view of the impact plume from a series of angles. ASI/University of Maryland/Tony Farnham/Nathan Marder  As LICIACube looked back at the asteroid, sunlight filtered through the dense cloud of debris, and the plume’s brightness faded. This suggested the plume was made of mostly large particles — about a millimeter or more across — which reflect less light than tiny dust grains.
      Since the innermost parts of the plume were so thick with debris that they were completely opaque, the scientists used models to estimate the number of particles that were hidden from view. Data from other rubble-pile asteroids, including pieces of Bennu delivered to Earth in 2023 by NASA’s OSIRIS-REx spacecraft, and laboratory experiments helped refine the estimate.
       
      “We estimated that this hidden material accounted for almost 45% of the plume’s total mass,” said Timothy Stubbs, a planetary scientist at NASA Goddard who was involved with the study.
       
      While DART showed that a high-speed collision with a spacecraft can change an asteroid’s trajectory, Stubbs and his colleagues note that different asteroid types, such as those made of stronger, more tightly packed material, might respond differently to a DART-like impact. “Every time we interact with an asteroid, we find something that surprises us, so there’s a lot more work to do,” said Stubbs. “But DART is a big step forward for planetary defense.”
       
      The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, managed the DART mission and operated the spacecraft for NASA’s Planetary Defense Coordination Office as a project of the agency’s Planetary Missions Program Office.
       
      By Nathan Marder, nathan.marder@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Aug 21, 2025 Related Terms
      DART (Double Asteroid Redirection Test) Explore More
      2 min read NASA’s DART Team Earns AIAA Space Systems Award for Pioneering Mission


      Article


      12 months ago
      5 min read NASA’s DART Mission Sheds New Light on Target Binary Asteroid System


      Article


      1 year ago
      3 min read NASA Selects Participating Scientists to Join ESA’s Hera Mission


      Article


      1 year ago
      Keep Exploring Discover Related Topics
      Double Asteroid Redirection Test (DART)



      Asteroids, Comets & Meteors



      Our Solar System



      For Planetary Science Researchers


      Resources specifically curated to help planetary science researchers, whether new to the field or seasoned professionals.

      View the full article
    • By European Space Agency
      Image: The development of ESA’s Earth Explorer FLEX mission has recently passed a significant milestone: the mission’s all-important instrument has been joined to its satellite platform. View the full article
    • By NASA
      An artist’s concept of the Moon (right) and Mars (center) against the starry expanse of space. A sliver of the Earth’s horizon can be seen in the foreground.Credit: NASA NASA is accepting U.S. submissions for the second phase of the agency’s LunaRecycle Challenge, a Moon-focused recycling competition. The challenge aims to develop solutions for recycling common trash materials – like fabrics, plastics, foam, and metals – that could accumulate from activities such as system operations, industrial activities, and building habitats in deep space.
      Phase 2 of the LunaRecycle Challenge is divided into two levels: a milestone round and the final round. Submissions for the milestone round are open until January 2026, with finalists from that round announced in February. Up to 20 finalists from the milestone round will compete in the challenge’s in-person prototype demonstrations and final judging, slated for the following August. Cash prizes totaling $2 million are available for successful solutions in both rounds. 
      “NASA is eager to see how reimagining these materials can be helpful to potential future planetary surface missions,” said Jennifer Edmunson, acting program manager for Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “I’m confident focusing on the most critical trash items – and integration of the prototype and digital twin competition tracks – will yield remarkable solutions that could enable a sustainable human presence off-Earth and transform the future of space exploration.”
      Estimates indicate a crew of four astronauts could generate more than 2,100 kilograms (4,600 pounds) of single-use waste – including food packaging, plastic films, foam packaging, clothing, and more – within 365 days. Successful solutions in LunaRecycle’s Phase 2 should manage realistic trash volumes while minimizing resource inputs and crew time and operating safely with minimal hazards.
      Phase 2 is only open to U.S. individuals and teams. Participants can submit solutions regardless of whether they competed in the earlier Phase 1 competition.
      All Phase 2 participants are expected to build a physical prototype. In addition, participants can submit a digital twin of their prototype for additional awards in the milestone and final rounds.
      The LunaRecycle Challenge is a NASA Centennial Challenge, part of the Prizes, Challenges and Crowdsourcing Program within NASA’s Space Technology Mission Directorate. LunaRecycle Phase 1 received record-breaking interest from the global innovator community. The challenge received more than 1,200 registrations – more than any competition in the 20-year history of Centennial Challenges – and a panel of 50 judges evaluated nearly 200 submissions. Seventeen teams were selected as Phase 1 winners, representing five countries and nine U.S. states. Winners were announced via livestream on NASA Marshall’s YouTube channel.
      LunaRecycle is managed at NASA Marshall with subject matter experts primarily at the center, as well as NASA’s Kennedy Space Center in Florida and NASA’s Ames Research Center in California’s Silicon Valley. NASA, in partnership with The University of Alabama College of Engineering, manages the challenge with coordination from former Centennial Challenge winner AI SpaceFactory and environmental sustainability industry member Veolia.
      To learn more about LunaRecycle’s second phase, including registration for upcoming webinars, visit:
                                                                  https://www.nasa.gov/lunarecycle
      -end-
      Jasmine Hopkins
      NASA Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      taylor.goodwin@nasa.gov
      Share
      Details
      Last Updated Aug 11, 2025 LocationNASA Headquarters Related Terms
      NASA Headquarters Ames Research Center Centennial Challenges Kennedy Space Center Marshall Space Flight Center Prizes, Challenges, and Crowdsourcing Program Space Technology Mission Directorate View the full article
    • By NASA
      This view of tracks trailing NASA’s Curiosity rover was captured July 26, 2025, as the rover simultaneously relayed data to a Mars orbiter.NASA/JPL-Caltech NASA’s Curiosity rover captured a view of its tracks on July 26, 2025. The robotic scientist is now exploring a region of lower Mount Sharp, a 3-mile-tall (5-kilometer-tall) mountain. The pale peak of the mountain can be seen at top right; the rim of Gale Crater, within which the mountain sits, is on the horizon at top left. Curiosity touched down on the crater floor 13 years ago.
      Recently, the rover rolled into a region filled with boxwork formations. Studying these formations could reveal whether microbial life could have survived in the Martian subsurface eons ago, extending the period of habitability farther into when the planet was drying out. Read more about the detective work Curiosity is doing on Mars.
      Image credit: NASA/JPL-Caltech

      View the full article
  • Check out these Videos

×
×
  • Create New...