Jump to content

10 Years Ago: Orion Flies its First Mission


Recommended Posts

  • Publishers
Posted

A new American human-rated spacecraft made its first foray into space on Dec. 5, 2014. Under contract to NASA, Lockheed Martin builds Orion as the vehicle to take American astronauts back to the Moon and eventually beyond. Orion’s overall shape harkens back to the Apollo Command and Service Modules, but using today’s technology is a larger and far more capable vehicle for NASA’s Artemis Program.

Orion’s first mission, called Engineering Flight Test-1 (EFT-1), used a Delta-IV Heavy booster, at the time the most powerful operational rocket. The 4.5-hour mission demonstrated Orion’s space-worthiness, tested the spacecraft’s heat shield during reentry into the Earth’s atmosphere, and proved the capsule’s recovery systems. Although the EFT-1 mission didn’t include a crew, the Orion capsule flew higher and faster than any human-rated spacecraft in more than 40 years.

A spacecraft is launching from a launch pad. Fire and smoke billows around the rocket as it lifts into the air.
The United Launch Alliance Delta IV Heavy rocket with NASA’s Orion spacecraft mounted atop, lifts off from Cape Canaveral Air Force Station’s Space Launch Complex 37B in Florida.
NASA/Bill Ingalls

At 7:05 a.m. EST on Dec. 5, 2014, the three-core first stage of the Delta-IV Heavy rocket ignited, lifting the Orion spacecraft off from Launch Complex 37B at Cape Canaveral Air Force, now Space Force, Station (CCAFS) in Florida to begin the EFT-1 mission. Three minutes and fifty-eight seconds after liftoff, the two side boosters separated as the center core continued firing for another 93 seconds. The second stage ignited thirteen seconds after separation to begin the first of three planned burns. During the first burn, the Service Module’s protective fairing separated, followed by the Launch Abort System. Lasting about 11 and a half minutes, this first burn of the second stage placed the spacecraft into a preliminary 115-by-552-mile parking orbit. While completing one revolution around the Earth, controllers in Mission Control at NASA’s Johnson Space Center in Houston, led by Flight Director Michael L. Sarafin, verified the functioning of the spacecraft’s systems. The second stage ignited a second time, firing for 4 minutes and 42 seconds to raise Orion’s apogee or high point above the Earth to 3,600 miles. During the coast to apogee, Orion remained attached to the second stage and completed its first crossing through the inner Van Allen radiation belt.

A group of employees sit around individual monitors in an office. The office has a large screen on the far wall with images projected on it. The screen shows a map of the earth. The employees are all focused.
Mission Control at NASA’s Johnson Space Center in Houston, Texas during the EFT-1 mission.
NASA/Mark Sowa

Three hours and five minutes after launch, Orion reached its apogee and began its descent back toward Earth, separating from the second stage about 18 minutes later. The second stage conducted a one-minute disposal burn to ensure it didn’t interfere with the spacecraft’s trajectory. During the passage back through the Van Allen belt, Orion fired its thrusters for 10 seconds to adjust its course for reentry. At an altitude of 400,000 feet, the spacecraft encountered the first tendrils of the Earth’s atmosphere at a point called Entry Interface, traveling at 20,000 miles per hour (mph). A buildup of ionized gases caused by the reentry heating resulted in a communications blackout with Orion for about two and a half minutes. The spacecraft experienced maximum heating of about 4,000 degrees Fahrenheit, proving the worthiness of the heat shield. After release of Orion’s forward bay cover, two drogue parachutes deployed to slow and stabilize the spacecraft. Next followed deployment of the three main parachutes that slowed the spacecraft to 20 mph. Splashdown occurred 4 hours and 24 minutes after launch about 600 miles southwest of San Diego, California. A video of the Orion EFT-1 mission can be viewed here.

A white spacecraft in the shape of a capsule is hanging from two large parachutes that are red and white in color. The spacecraft is about to splash into the blue ocean.
Crew module splashing down during EFT-1 in the Pacific ocean.
NASA

Standing by to recover the Orion capsule, U.S. Navy Divers assigned to Explosive Ordnance Disposal Mobile Unit 11 and Fleet Combat Camera Pacific and crew members from amphibious transport dock U.S.S. Anchorage (LPD-23) stepped into action, first placing a flotation collar around the spacecraft. After securing a tow line to the capsule, the sailors towed it aboard the amphibious well deck of Anchorage, which set sail for Naval Base San Diego arriving there on Dec 8. Engineers from NASA and Lockheed Martin conducted a preliminary inspection of the spacecraft during the cruise to San Diego and found that it survived its trip into space in excellent condition.

People in a high-speed boat are approaching a grey spacecraft shaped like a capsule that is on the water. The capsule has an American flag on it and inflated orange balloons on the top. Two other smaller boats are behind the first boat on standby. The boats are there to help the crew in the grey capsule exit the spacecraft.
U.S. Navy divers approach the Orion capsule during recovery operations.
U.S. Navy

The Orion EFT-1 mission met all its objectives and received many accolades. “Today was a great day for America,” said Flight Director Sarafin from his console at Mission Control. “It is hard to have a better day than today,” said Mark S. Geyer, Orion program manager. “We’re already working on the next capsule,” said W. Michael “Mike” Hawes, Lockheed Martin’s Orion program manager, adding, “We’ll learn a tremendous amount from what we did today.” NASA Associate Administrator for Human Exploration and Operations William H. Gerstenmaier praised all personnel involved with the EFT-1 mission, “What a tremendous team effort.” NASA Administrator Charles F. Bolden summarized his thoughts about the mission, “Today’s flight test of Orion is a huge step for NASA and a really critical part of our work to pioneer deep space.”

A group of people are standing around the weathered Orion capsule sitting on top of a white structure in a large hangar. A wide opening is at the mouth of the hangar where the group of people are standing.
Former NASA Administrator Charles F. Bolden inspects Orion EFT-1 capsule at NASA’s Kennedy Space Center in Florida.
NASA

After its arrival at Naval Base San Diego, workers placed the Orion capsule aboard a truck that delivered it to NASA’s Kennedy Space Center (KSC) in Florida on Dec. 18. After engineers conducted a thorough inspection of the spacecraft at KSC, workers trucked it to the Lockheed Martin facility in Littleton, Colorado, where it arrived on Sept. 1, 2015. Engineers completed final inspections and decontamination of the vehicle. The KSC Visitor Complex has the capsule on display.

The white Orion capsule with the red NASA logo floats in space against a black background. The Moon and Earth are in the background to the right of the capsule. The Earth is smaller than the Moon. The Moon sits to the left of the Earth.
The Orion capsule during the Artemis I mission, with the Moon and Earth in the background.
NASA

The next time an Orion spacecraft flew in space during the Artemis I mission, the Space Launch System (SLS) carried it into orbit after launch from KSC’s Launch Complex 39B. The thunderous night launch took place on Nov. 16, 2022. The first in a series of increasingly complex missions, Artemis I provided a foundation for human deep space exploration and demonstrated our commitment and capability to extend human existence to the Moon and beyond. The uncrewed Orion spacecraft spent 25.5 days in space, including 6 days in a retrograde orbit around the Moon, concluding with a splashdown in the Pacific Ocean on Dec. 11, exactly 50 years after the Apollo 17 Moon landing.

Four crew members in blue jumpsuits are standing next to each other in front of the Orion capsule.
The Artemis II crew poses in front of the Orion capsule at NASA’s Kennedy Space Center in Florida.
NASA/Kim Shiflett

On April 3, 2023, NASA named the four-person crew for the Artemis II mission, the first flight to take humans beyond low Earth orbit since Apollo 17 in December 1972. The crew includes NASA astronauts G. Reid Wiseman as commander, Victor J. Glover as pilot, and Christina H. Koch as a mission specialist as well as Canadian Space Agency astronaut Jeremy R. Hansen as the other mission specialist. The four will take an Orion spacecraft on a 10-day journey around the Moon to human rate the spacecraft and SLS.

Interested in learning more about the Artemis Program? Go to https://www.nasa.gov/humans-in-space/artemis/

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA’s X-59 Moves Toward First Flight at Speed of Safety
      NASA’s X-59 quiet supersonic research aircraft is seen at dawn with firetrucks and safety personnel nearby during a hydrazine safety check at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. The operation highlights the extensive precautions built into the aircraft’s safety procedures for a system that serves as a critical safeguard, ensuring the engine can be restarted in flight as the X-59 prepares for its first flight. Credits: Lockheed Martin As NASA’s one-of-a-kind X-59 quiet supersonic research aircraft approaches first flight, its team is mapping every step from taxi and takeoff to cruising and landing – and their decision-making is guided by safety.
      First flight will be a lower-altitude loop at about 240 mph to check system integration, kicking off a phase of flight testing focused on verifying the aircraft’s airworthiness and safety. During subsequent test flights, the X-59 will go higher and faster, eventually exceeding the speed of sound. The aircraft is designed to fly supersonic while generating a quiet thump rather than a loud sonic boom.
      To help ensure that first flight – and every flight after that – will begin and end safely, engineers have layered protection into the aircraft.
      The X-59’s Flight Test Instrumentation System (FTIS) serves as one of its primary record keepers, collecting and transmitting audio, video, data from onboard sensors, and avionics information – all of which NASA will track across the life of the aircraft.
      “We record 60 different streams of data with over 20,000 parameters on board,” said Shedrick Bessent, NASA X-59 instrumentation engineer. “Before we even take off, it’s reassuring to know the system has already seen more than 200 days of work.”
      Through ground tests and system evaluations, the system has already generated more than 8,000 files over 237 days of recording. That record provides a detailed history that helps engineers verify the aircraft’s readiness for flight.
      Maintainers perform a hydrazine safety check on the agency’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, and is one of several safety features being validated ahead of the aircraft’s first flight.Credits: Lockheed Martin “There’s just so much new technology on this aircraft, and if a system like FTIS can offer a bit of relief by showing us what’s working – with reliability and consistency – that reduces stress and uncertainty,” Bessent said. “I think that helps the project just as much as it helps our team.”
      The aircraft also uses a digital fly-by-wire system that will keep the aircraft stable and limit unsafe maneuvers. First developed in the 1970s at NASA’s Armstrong Flight Research Center in Edwards, California, digital fly-by-wire replaced how aircraft were flown, moving away from traditional cables and pulleys to computerized flight controls and actuators.
      On the X-59, the pilot’s inputs – such as movement of the stick or throttle – are translated into electronic signals and decoded by a computer. Those signals are then sent through fiber-optic wires to the aircraft’s surfaces, like its wings and tail.
      Additionally, the aircraft uses multiple computers that back each other up and keep the system operating. If one fails, another takes over. The same goes for electrical and hydraulic systems, which also have independent backup systems to ensure the aircraft can fly safely.
      Onboard batteries back up the X-59’s hydraulic and electrical systems, with thermal batteries driving the electric pump that powers hydraulics. Backing up the engine is an emergency restart system that uses hydrazine, a highly reactive liquid fuel. In the unlikely event of a loss of power, the hydrazine system would restart the engine in flight. The system would help restore power so the pilot could stabilize or recover the aircraft.
      Maintainers perform a hydrazine safety check on NASA’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, which is one of several safety features being validated ahead of the aircraft’s first flight. Credits: Lockheed Martin Protective Measures
      Behind each of these systems is a team of engineers, technicians, safety and quality assurance experts, and others. The team includes a crew chief responsible for maintenance on the aircraft and ensuring the aircraft is ready for flight.
      “I try to always walk up and shake the crew chief’s hand,” said Nils Larson, NASA X-59 lead test pilot. “Because it’s not your airplane – it’s the crew chief’s airplane – and they’re trusting you with it. You’re just borrowing it for an hour or two, then bringing it back and handing it over.”
      Larson, set to serve as pilot for first flight, may only be borrowing the aircraft from the X-59’s crew chiefs – Matt Arnold from X-59 contractor Lockheed Martin and Juan Salazar from NASA – but plenty of the aircraft’s safety systems were designed specifically to protect the pilot in flight.
      The X-59’s life support system is designed to deliver oxygen through the pilot’s mask to compensate for the decreased atmospheric pressure at the aircraft’s cruising altitude of 55,000 feet – altitudes more than twice as high as that of a typical airliner. In order to withstand high-altitude flight, Larson will also wear a counter-pressure garment, or g-suit, similar to what fighter pilots wear.
      In the unlikely event it’s needed, the X-59 also features an ejection seat and canopy adapted from a U.S. Air Force T-38 trainer, which comes equipped with essentials like a first aid kit, radio, and water. Due to the design, build, and test rigor put into the X-59, the ejection seat is a safety measure.
      All these systems form a network of safety, adding confidence to the pilot and engineers as they approach to the next milestone – first flight.
      “There’s a lot of trust that goes into flying something new,” Larson said. “You’re trusting the engineers, the maintainers, the designers – everyone who has touched the aircraft. And if I’m not comfortable, I’m not getting in. But if they trust the aircraft, and they trust me in it, then I’m all in.”
      Share
      Details
      Last Updated Sep 12, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Ames Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations
      Article 20 minutes ago 3 min read NASA, Embry-Riddle Enact Agreement to Advance Research, Educational Opportunities
      Article 24 hours ago 4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care  
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      The first Proliferated Warfighter Space Architecture Tranche 1 Transport Layer space vehicles successfully launched from Vandenberg Space Force Base.

      View the full article
    • By Space Force
      The U.S. Space Force honored Ed Mornston, associate deputy chief of Space Operations for Intelligence, for his 50 years of combined military and civilian service.

      View the full article
    • By NASA
      Boarding passes will carry participants’ names on NASA’s Artemis II mission in 2026.Credit: NASA Lee este comunicado de prensa en español aquí.
      NASA is inviting the public to join the agency’s Artemis II test flight as four astronauts venture around the Moon and back to test systems and hardware needed for deep space exploration. As part of the agency’s “Send Your Name with Artemis II” effort, anyone can claim their spot by signing up before Jan. 21.
       
      Participants will launch their name aboard the Orion spacecraft and SLS (Space Launch System) rocket alongside NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen.
       
      “Artemis II is a key test flight in our effort to return humans to the Moon’s surface and build toward future missions to Mars, and it’s also an opportunity to inspire people across the globe and to give them an opportunity to follow along as we lead the way in human exploration deeper into space,” said Lori Glaze, acting associate administrator, Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. 
       
      The collected names will be put on an SD card loaded aboard Orion before launch. In return, participants can download a boarding pass with their name on it as a collectable.
       
      To add your name and receive an English-language boarding pass, visit: 

      https://go.nasa.gov/artemisnames
       
      To add your name and receive a Spanish-language boarding pass, visit: 

      https://go.nasa.gov/TuNombreArtemis
       
      As part of a Golden Age of innovation and exploration, the approximately 10-day Artemis II test flight, launching no later than April 2026, is the first crewed flight under NASA’s Artemis campaign. It is another step toward new U.S.-crewed missions on the Moon’s surface that will help the agency prepare to send the first astronauts – Americans – to Mars.
       
      To learn more about the mission visit:
       
      https://www.nasa.gov/mission/artemis-ii/
       
      -end-
       
      Rachel Kraft
      Headquarters, Washington
      202-358-1600
      rachel.h.kraft@nasa.gov

      Share
      Details
      Last Updated Sep 09, 2025 LocationNASA Headquarters Related Terms
      Artemis 2 Artemis Missions View the full article
    • By NASA
      NASA/Rad Sinyak Orion Mission Evaluation Room (MER) team member works during an Artemis II mission simulation on Aug. 19, 2025, from the new Orion MER inside the Mission Control Center at NASA’s Johnson Space Center in Houston.
      As NASA’s Orion spacecraft is carrying crew around the Moon on the Artemis II mission, a team of expert engineers in the Mission Control Center at NASA’s Johnson Space Center in Houston will be meticulously monitoring the spacecraft along its journey. They’ll be operating from a new space in the mission control complex built to host the Orion Mission Evaluation Room (MER). Through the success of Orion and the Artemis missions, NASA will return humanity to the Moon and prepare to land an American on the surface of Mars.
      View the full article
  • Check out these Videos

×
×
  • Create New...