Jump to content

NASA Flights Map Critical Minerals from Skies Above Western US


Recommended Posts

  • Publishers
Posted

6 min read

NASA Flights Map Critical Minerals from Skies Above Western US

A hilly landscape is dotted with colors ranging from bright yellow to deep purple and blue, indicating the presence of different types of minerals.
Various minerals are revealed in vibrant detail in this sample mineral map of Cuprite, Nevada, following processing of imaging spectrometer data.
USGS

On a crystal-clear afternoon above a desert ghost town, a NASA aircraft scoured the ground for minerals.

The plane, a high-altitude ER-2 research aircraft, had taken off early that morning from NASA’s Armstrong Flight Research Center in Edwards, California. Below pilot Dean Neeley, the landscape looked barren and brown. But to the optical sensors installed on the plane’s belly and wing, it gleamed in hundreds of colors.

Neeley’s flight that day was part of GEMx, the Geological Earth Mapping Experiment led by NASA and the U.S. Geological Survey to map critical minerals across more than 190,000 square miles (500,000 square kilometers) of North American soil. Using airborne instruments, scientists are collecting these measurements over parts of California, Nevada, Arizona, and Oregon. That’s an area about the size of Spain.   

Against a bright blue sky streaked with clouds, a white airplane soars over snowy mountains.
An ER-2 science aircraft banks away during a flight over the southern Sierra Nevada. The high-altitude plane supports a wide variety of research missions, including the GEMx campaign, which is mapping critical minerals in the Western U.S. using advanced airborne imaging developed by NASA.
Credit: NASA/Carla Thomas

Lithium, aluminum, rare earth elements such as neodymium and cerium — these are a few of the 50 mineral commodities deemed essential to U.S. national security, to the tech industry, and to clean energy. They support a wide range of technologies from smartphones to steelmaking, from wind turbines to electric vehicle batteries. In 2023, the U.S. imported its entire supply of 12 of these minerals and imported at least 50% of its supply of another 29.

The GEMx team believes that undiscovered deposits of at least some of these minerals exist domestically, and modern mineral maps will support exploration by the private sector.

“We’ve been exploring the earth beneath our feet for hundreds of years, and we’re discovering that we’ve only just begun,” said Kevin Reath, NASA’s associate project manager for GEMx.

The View From 65,000 Feet

To jumpstart mineral exploration, USGS is leading a nationwide survey from the inside out, using tools like lidar and magnetic-radiometric sensors to probe ancient terrain in new detail.

The collaboration with NASA brings another tool to bear: imaging spectrometers. These advanced optical instruments need to stay cold as they fly high. From cryogenic vacuum chambers on planes or spacecraft, they detect hundreds of wavelengths of light — from the visible to shortwave infrared — reflected off planetary surfaces. The technology is now being used to help identify surface minerals across dry, treeless expanses of the Western U.S.

Every molecule reflects a unique pattern of light, like a fingerprint. Processed through a spectroscopic lens, a desert expanse can appear like an oil painting popping with different colorful minerals, including pale-green mica, blue kaolinite, and plummy gypsum.

“We’re not digging for gold. We’re revealing what’s hidden in plain sight,” said Robert Green, a researcher at NASA’s Jet Propulsion Laboratory in Southern California, who helped pioneer spectroscopic imaging at NASA JPL in the late 1970s. Like many of the scientists involved with GEMx, he has spent years surveying other worlds, including the Moon and Mars.

A handful of such instruments exist on Earth, and Green is in charge of two of them. One, called EMIT (Earth Surface Mineral Dust Source Investigation) flies aboard the International Space Station. Surveying Earth’s surface from about 250 miles (410 kilometers) above, EMIT has captured thousands of images at a resolution of 50 by 50 miles (80 by 80 kilometers) in a wide belt around Earth’s mid-section.

The other instrument rides beneath the fuselage of the ER-2 aircraft. Called AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), it’s helping guide geologists to critical minerals directly and indirectly, by spotting the types of rocks that often contain them. It’s joined by another instrument developed by NASA, the MODIS/ASTER Airborne Simulator (MASTER), which senses thermal infrared radiance. Both instruments provide finely detailed measurements of minerals that complement what EMIT sees on a broader scale.

A man in a yellow spacesuit and American flag-helmet sits on a chair as another man in a NASA shirt connects tubing between the suit and equipment on a table.
A crew of life support staff prepare pilot Dean Neeley for an ER-2 flight. A specialized suit – similar to an astronaut’s – allows the pilot to work, breathe, and eat at altitudes almost twice as high as a cruising passenger jet.
NASA/Carla Thomas

Old Mines, New Finds

In and around the multimillion-year-old magmas of the Great Basin of the Western U.S., lithium takes several forms. The silvery metal is found in salty brines, in clay, and locked in more than 100 different types of crystals. It can also be detected in the tailings of abandoned prospects like Hector Mine, near Barstow, California.

Abandoned years before a magnitude 7.1 earthquake rocked the region in 1999, the mine is located on a lode of hectorite, a greasy, lithium-bearing clay. Geologists from USGS are taking a second look at legacy mines like Hector as demand for lithium rises, driven primarily by lithium-ion batteries. A typical battery pack in an electric vehicle uses about 17 pounds (eight kilograms) of the energy-dense metal.

Australia and Chile lead worldwide production of lithium, which exceeded 180,000 tons in 2023. The third largest producer is China, which also hosts about 50% of global lithium refining capacity. Total U.S. production was around 1,000 tons, sourced entirely from a deposit in northern Nevada. Known reserves in the state are estimated to contain more than a million metric tons of lithium, according to data collected by the Nevada Bureau of Mines and Geology.

Mine wastes are also potential sources of lithium, said Bernard Hubbard, a remote sensing geologist at USGS, and many other byproduct commodities that are considered critical today but were discarded by previous generations.

“There are old copper and silver mines in the West that were abandoned long before anyone knew what lithium or rare earth element deposits were,” Hubbard said. “What has been a pollution source for communities could now be a resource.”

Following a winter pause, high-altitude GEMx flights over the American West will resume in the spring of 2025, after which USGS will process the raw data and release the first mineral maps. Already, the project has collected enough data to start producing a complete hyperspectral map of California — the first of its kind.

The value of these observations extends beyond identifying minerals. Scientists expect they’ll provide new insight into invasive plant species, waste from mines that can contaminate surrounding environments, and natural hazards such as earthquakes, landslides, and wildfires.

“We are just beginning to scratch the surface in applying these measurements to help the nation’s economy, security, and health,” said Raymond Kokaly, USGS research geophysicist and lead of the GEMx survey.

More About GEMx

The GEMx research project will last four years and is funded by the USGS Earth Mapping Resources Initiative (EarthMRI), through investments from the Bipartisan Infrastructure Law. The initiative will capitalize on both the technology developed by NASA for spectroscopic imaging as well as the expertise in analyzing the datasets and extracting critical mineral information from them.

Data collected by GEMx is available here.

By Sally Younger
NASA’s Earth Science News Team

Share

Details

Last Updated
Dec 05, 2024
Contact
Sally Younger

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Kevin O’Brien Demonstration Motor-1 (DM-1) is the first full-scale ground test of the evolved five-segment solid rocket motor of NASA’s SLS (Space Launch System) rocket. The event will take place in Promontory, Utah, and will be used as an opportunity to test several upgrades made from the current solid rocket boosters. Each booster burns six tons of solid propellant every second and together generates almost eight million pounds of thrust.
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034 
      jonathan.e.deal@nasa.gov
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Drag your mouse or move your phone to pan around within this 360-degree view to explore the boxwork patterns on Mars that NASA’s Curiosity is investigating for the first time. The rover captured the 291 images that make up this mosaic between May 15 and May 18.
      Credit: NASA/JPL-Caltech/MSSS The rover recently drilled a sample from a new region with features that could reveal whether Mars’ subsurface once provided an environment suitable for life.
      New images from NASA’s Curiosity Mars rover show the first close-up views of a region scientists had previously observed only from orbit. The images and data being collected are already raising new questions about how the Martian surface was changing billions of years ago. The Red Planet once had rivers, lakes, and possibly an ocean. Although scientists aren’t sure why, its water eventually dried up and the planet transformed into the chilly desert it is today.
      By the time Curiosity’s current location formed, the long-lived lakes were gone in Gale Crater, the rover’s landing area, but water was still percolating under the surface­. The rover found dramatic evidence of that groundwater when it encountered crisscrossing low ridges, some just a few inches tall, arranged in what geologists call a boxwork pattern. The bedrock below these ridges likely formed when groundwater trickling through the rock left behind minerals that accumulated in those cracks and fissures, hardening and becoming cementlike. Eons of sandblasting by Martian wind wore away the rock but not the minerals, revealing networks of resistant ridges within.
      NASA’s Curiosity Mars rover captured this scene while looking out across a region filled with boxwork patterns, low ridges that scientists think could have been formed by groundwater billions of years ago.NASA/JPL-Caltech/MSSS The ridges Curiosity has seen so far look a bit like a crumbling curb. The boxwork patterns stretch across miles of a layer on Mount Sharp, a 3-mile-tall (5-kilometer-tall) mountain whose foothills the rover has been climbing since 2014. Intriguingly, boxwork patterns haven’t been spotted anywhere else on the mountain, either by Curiosity or orbiters passing overhead.
      “A big mystery is why the ridges were hardened into these big patterns and why only here,” said Curiosity’s project scientist, Ashwin Vasavada of NASA’s Jet Propulsion Laboratory in Southern California. “As we drive on, we’ll be studying the ridges and mineral cements to make sure our idea of how they formed is on target.”
      Important to the boxwork patterns’ history is the part of the mountain where they’re found. Mount Sharp consists of multiple layers, each of which formed during different eras of ancient Martian climate. Curiosity essentially “time travels” as it ascends from the oldest to youngest layers, searching for signs of water and environments that could have supported ancient microbial life.
      The rover is currently exploring a layer with an abundance of salty minerals called magnesium sulfates, which form as water dries up. Their presence here suggests this layer emerged as the climate became drier. Remarkably, the boxwork patterns show that even in the midst of this drying, water was still present underground, creating changes seen today.
      NASA’s Curiosity Mars rover viewed this low ridge, which looks a bit like a crumbling curb, on May 16. Scientists think the hardened edges of such ridges — part of the boxwork region the rover is exploring — may have been formed by ancient groundwater.NASA/JPL-Caltech/MSSS Scientists hope to gain more insight into why the boxwork patterns formed here, and Mars recently provided some unexpected clues. The bedrock between the boxwork ridges has a different composition than other layers of Mount Sharp. It also has lots of tiny fractures filled with white veins of calcium sulfate, another salty mineral left behind as groundwater trickles through rock cracks. Similar veins were plentiful on lower layers of the mountain, including one enriched with clays, but had not been spotted in the sulfate layer until now.
      “That’s really surprising,” said Curiosity’s deputy project scientist, Abigail Fraeman of JPL. “These calcium sulfate veins used to be everywhere, but they more or less disappeared as we climbed higher up Mount Sharp. The team is excited to figure out why they’ve returned now.”
      New Terrain, New Findings
      On June 8, Curiosity set out to learn about the unique composition of the bedrock in this area, using the drill on the end of its robotic arm to snag a sample of a rock nicknamed “Altadena.” The rover then dropped the pulverized sample into instruments within its body for more detailed analysis.
      Drilling additional samples from more distant boxwork patterns, where the mineral ridges are much larger, will help the mission make sense of what they find. The team will also search for organic molecules and other evidence of an ancient habitable environment preserved in the cemented ridges.
      As Curiosity continues to explore, it will be leaving a new assortment of nicknames behind, as well. To keep track of features on the planet, the mission applies nicknames to each spot the rover studies, from hills it views with its cameras to specific calcium sulfate veins it zaps with its laser. (Official names, such as Aeolis Mons — otherwise known as Mount Sharp — are approved by the International Astronomical Union.)
      The previous names were selected from local sites in Southern California, where JPL is based. The Altadena sample, for instance, bears the name of a community near JPL that was severely burned during January’s Eaton Canyon fire. Now on a new part of their Martian map, the team is selecting names from around Bolivia’s Salar de Uyuni, Earth’s largest salt flat. This exceptionally dry terrain crosses into Chile’s Atacama Desert, and astrobiologists study both the salt flat and the surrounding desert because of their similarity to Mars’ extreme dryness.
      More About Curiosity
      Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington as part of NASA’s Mars Exploration Program portfolio.
      For more about Curiosity, visit:
      science.nasa.gov/mission/msl-curiosity
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-080
      Share
      Details
      Last Updated Jun 23, 2025 Related Terms
      Curiosity (Rover) Jet Propulsion Laboratory Mars Mars Science Laboratory (MSL) Explore More
      4 min read NASA Mars Orbiter Captures Volcano Peeking Above Morning Cloud Tops
      Article 2 weeks ago 6 min read NASA’s Ready-to-Use Dataset Details Land Motion Across North America
      Article 2 weeks ago 5 min read 3 Black Holes Caught Eating Massive Stars in NASA Data
      Black holes are invisible to us unless they interact with something else. Some continuously eat…
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Some career changes involve small shifts. But for one NASA engineering intern, the leap was much bigger –moving from under the hood of a car to helping air taxis take to the skies.
      Saré Culbertson spent more than a decade in the auto industry and had been working as a service manager in busy auto repair shops. Today, she supports NASA’s Air Mobility Pathfinders project as a flight operations engineer intern at NASA’s Armstrong Flight Research Center in Edwards, California, through NASA’s Pathways program.
      “NASA has helped me see opportunities I didn’t even know existed
      Saré Culbertson
      NASA Intern
      “NASA has helped me see opportunities I didn’t even know existed,” she said. “I realized that being good at something isn’t enough – you have to be passionate about it too.”
      With a strong foundation in mechanical engineering – earning a bachelor’s degree from California State University, Long Beach, Antelope Valley Engineering Program – she graduated magna cum laude and delivered her class’s commencement speech. Culbertson also earned two associate’s degrees, one in engineering and one in fine arts.
      NASA Pathways intern Saré Culbertson, right, works with NASA operations engineer Jack Hayes at NASA’s Armstrong Flight Research Center in Edwards, California, on Nov. 7, 2024. They are verifying GPS and global navigation satellite system coordinates using Emlid Reach RS2+ receiver equipment, which supports surveying, mapping, and navigation in preparation for future air taxi test flight research.NASA/Genaro Vavuris Before making the switch to aeronautics, she worked at car dealerships and independent car repair facilities while in college. She also led quality control efforts to help a manufacturer meet international standards for quality.
      “I never thought land surveying would have anything to do with flying. But it’s a key part of supporting our research with GPS and navigation verification,” Culbertson said. “GPS measures exact positions by analyzing how long signals take to travel from satellites to ground receivers. In aviation testing, it helps improve safety by reducing signal errors and ensuring location data of the aircraft is accurate and reliable.”
      A musician since childhood, Culbertson has also performed in 21 states, playing everything from tuba to trumpet, and even appeared on HBO’s “Silicon Valley” with her tuba. She’s played in ska, punk, and reggae bands and now performs baritone in the Southern Sierra Pops Orchestra.
      Saré Culbertson, NASA Pathways intern at NASA’s Armstrong Flight Research Center in Edwards, California, adjusts the Emlid Reach RS2+ receiver equipment that connects with GPS and global navigation satellite systems on Nov. 7, 2024, in preparation for future air taxi test flight research.NASA/Genaro Vavuris The NASA Pathways internship, she says, changed everything. Culbertson was recently accepted into the Master of Science in Flight Test Engineering program at the National Test Pilot School, where she will be specializing in fixed wing performance and flying qualities.
      Her advice for anyone starting out?
      “Listen more than you talk,” she said. “Don’t get so focused on the next promotion that you forget to be great at the job you have now.”
      During her internship, Culbertson is making meaningful contributions toward NASA’s Urban Air Mobility research. She collects location data for test landing sites as part of the first evaluation of an experimental commercial electric vertical takeoff landing aircraft, a significant milestone in the development of next generation aviation technologies. From fixing cars to helping air taxis become a reality, Saré Culbertson is proof that when passion meets persistence, the sky isn’t the limit – it’s just the beginning.
      Share
      Details
      Last Updated Jun 23, 2025 EditorDede DiniusContactLaura Mitchelllaura.a.mitchell@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Air Mobility Pathfinders project Careers Internships What We Do Explore More
      3 min read NASA Air Taxi Passenger Comfort Studies Move Forward
      Article 3 days ago 2 min read NASA Aircraft to Make Low-Altitude Flights in Mid-Atlantic, California
      Article 3 days ago 4 min read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry
      Article 5 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
      Curiosity Blog, Sols 4577-4579: Watch the Skies
      NASA’s Mars rover Curiosity acquired this image inside a trough in the boxwork terrain on Mars, using its Right Navigation Camera. Curiosity captured the image on June 20, 2025 — Sol 4575, or Martian day 4,575 of the Mars Science Laboratory mission — at 00:30:12 UTC. NASA/JPL-Caltech Written by Deborah Padgett, OPGS Task Lead at NASA’s Jet Propulsion Laboratory
      Earth planning date: Friday, June 20, 2025
      During the plan covering Sols 4575-4576, Curiosity continued our investigation of mysterious boxwork structures on the shoulders of Mount Sharp. After a successful 56-meter drive (about 184 feet), Curiosity is now parked in a trough cutting through a highly fractured region covered by linear features thought to be evidence of groundwater flow in the distant past of Mars. With all six wheels firmly planted on solid ground, our rover is ready for contact science! Unfortunately, a repeat of the frost-detection experiment expected for the weekend plan is postponed for a few days due to a well-understood ChemCam issue. In the meantime, our atmospheric investigations have a chance to shine, as they received additional time to observe the Martian sky.
      In the early afternoon of Sol 4577, Curiosity’s navigation cameras will take a movie of the upper reaches of Aeolis Mons (Mount Sharp), hoping to see moving cloud shadows. This observation enables the team to calculate the altitude of clouds drifting over the peak. Next, Navcam will point straight up, to image cloud motion at the zenith and determine wind direction at their altitude. Mastcam will then do a series of small mosaics to study the rover workspace and features of the trough that Curiosity has entered. First is a 6×4 stereo mosaic of the workspace and the contact science targets “Copacabana” and “Copiapo.” The first target is a representative sample of the trough bedrock, and its name celebrates a town in Bolivia located on the shores of Lake Titicaca. The second target is a section of lighter-toned material, which may be associated with stripes or “veins” filling the many crosscutting fractures in the local stones. These are the deposits potentially left by groundwater intrusion long ago. The name “Copiapo” honors a silver mining city in the extremely dry Atacama desert of northern Chile. A second 6×3 Mastcam stereo mosaic will look at active cracks in the trough. Two additional 5×1 Mastcam stereo mosaics target “Ardamarca,” a ridge parallel to the trough walls, and a cliff exposing layers of rock at the base of “Mishe Mokwa” butte. At our current location, all the Curiosity target names are taken from the Uyuni geologic quadrangle named after the otherworldly lake bed and ephemeral lake high on the Bolivian altiplano, but the Mishe Mokwa butte is back in the Altadena quad, named for a popular hiking trail in the Santa Monica Mountains. After this lengthy science block, Curiosity will deploy its arm, brush the dust from Copacabana with the DRT, then image both it and Copiapo with the MAHLI microscopic imager. Overnight, APXS will determine the composition of these two targets. 
      Early in the morning of Sol 4578, Mastcam will take large 27×5 and 18×3 stereo mosaics of different parts of the trough, using morning light to highlight the terrain shadows. Later in the day, Navcam will do a 360 sky survey, determining phase function across the entire sky. A 25-meter drive (about 82 feet) will follow, and the post-drive imaging includes both a 360-degree Navcam panorama of our new location and an image of the ground under the rover with MARDI in the evening twilight. The next sol is all atmospheric science, with an extensive set of afternoon suprahorizon movies and a dust-devil survey for Navcam, as well as a Mastcam dust opacity observation. The final set of observations in this plan happens on the morning of Sol 4580 with more Navcam suprahorizon and zenith movies to observe clouds, a Navcam dust opacity measurement across Gale Crater, and a last Mastcam tau. On Monday, we expect to plan another drive and hope to return to the frost-detection experiment soon as we explore the boxwork canyons of Mars.

      For more Curiosity blog posts, visit MSL Mission Updates


      Learn more about Curiosity’s science instruments

      Share








      Details
      Last Updated Jun 20, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4575-4576: Perfect Parking Spot


      Article


      5 hours ago
      3 min read Curiosity Blog, Sols 4573-4574: Welcome to the Uyuni Quad


      Article


      2 days ago
      3 min read Curiosity Blog, Sols 4570-4572: A Fond Farewell, With a Side of Frost


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA employee Naomi Torres sits inside the air taxi passenger ride quality simulator at NASA’s Armstrong Flight Research Center in Edwards, California, as the simulator moves during a study on Oct. 23, 2024. Research continues to better understand how humans may interact with these new types of aircraft.NASA/Steve Freeman NASA’s Advanced Air Mobility vision involves the skies above the U.S. filled with new types of aircraft, including air taxis. But making that vision a reality involves ensuring that people will actually want to ride these aircraft – which is why NASA has been working to evaluate comfort, to see what passengers will and won’t tolerate. 
      NASA is conducting a series of studies to understand how air taxi motion, vibration, and other factors affect ride comfort. The agency will provide the data it gathers to industry and others to guide the design and operational practices for future air taxis. 
      “The results of this study can guide air taxi companies to design aircraft that take off, land, and respond to winds and gusts in a way that is comfortable for the passengers,” said Curt Hanson, senior flight controls researcher for this project based at NASA’s Armstrong Flight Research Center in Edwards, California. “Passengers who enjoy their experience in an air taxi are more likely to become repeat riders, which will help the industry grow.” 
      The air taxi comfort research team uses NASA Armstrong’s Ride Quality Laboratory as well as the Human Vibration Lab and Vertical Motion Simulator at NASA’s Ames Research Center in California’s Silicon Valley to study passenger response to ride quality, as well as how easily and precisely a pilot can control and maneuver aircraft. 
      After pilots checked out the simulator setup, the research team conducted a study in October where NASA employees volunteered to participate as passengers to experience the virtual air taxi flights and then describe their comfort level to the researchers.  
      Curt Hanson, senior flight controls researcher for the Revolutionary Vertical Lift Technology project based at NASA’s Armstrong Flight Research Center in Edwards, California, explains the study about to begin to NASA employee and test subject Naomi Torres on Oct. 23, 2024. Behind them is the air taxi passenger ride quality simulator in NASA Armstrong’s Ride Quality Laboratory. Studies continue to better understand passenger comfort for future air taxi rides.NASA/Steve Freeman Using this testing, the team produced an initial study that found a relationship between levels of sudden vertical motion and passenger discomfort. More data collection is needed to understand the combined effect of motion, vibration, and other factors on passenger comfort. 
      “In the Vertical Motion Simulator, we can investigate how technology and aircraft design choices affect the handling qualities of the aircraft, generate data as pilots maneuver the air taxi models under realistic conditions, and then use this to further investigate passenger comfort in the Ride Quality and Human Vibration Labs,” said Carlos Malpica, senior rotorcraft flight dynamics researcher for this effort based at NASA Ames. 
      This work is managed by the Revolutionary Vertical Lift Technology project under NASA’s Advanced Air Vehicles Program in support of NASA’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones. 
      Share
      Details
      Last Updated Jun 20, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Mobility Advanced Air Vehicles Program Aeronautics Ames Research Center Drones & You Revolutionary Vertical Lift Technology Explore More
      2 min read NASA Aircraft to Make Low-Altitude Flights in Mid-Atlantic, California
      Article 4 hours ago 4 min read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry
      Article 2 days ago 4 min read NASA Tech to Measure Heat, Strain in Hypersonic Flight
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...