Jump to content

Turn Supermoon Hype into Lunar Learning


Recommended Posts

  • Publishers
Posted
2 Min Read

Turn Supermoon Hype into Lunar Learning

Graphic illustrating the distance between Earth and its moon: 250,000 miles or 400,000 km
Caption: The Earth-Moon distance to scale.
Credits:
NASA/JPL-Caltech

Supermoons get lots of publicity from the media, but is there anything to them beyond the hype? If the term “supermoon” bothers you because it’s not an official astronomical term, don’t throw up your hands. You can turn supermoon lemons into lunar lemonade for your star party visitors by using it to illustrate astronomy concepts and engaging them with great telescopic views of its surface!

Many astronomers find the frequent supermoon news from the media misleading, if not a bit upsetting! Unlike the outrageously wrong “Mars is as big as the moon” pieces that appear like clockwork every two years during Mars’s close approach to Earth, news about a huge full moon is more of an overstatement. The fact is that while a supermoon will indeed appear somewhat bigger and brighter in the sky, it would be difficult to tell the difference between an average full moon and a supermoon with the naked eye. 

perigee_0-jpg.webp?w=637
A whiteboard illustration of Earth’s Moon at perigee, or closest position to Earth.
Credit: NASA

There are great bits of science to glean from supermoon discussion that can turn supermoon questions into teachable moments. For example, supermoons are a great gateway into discussing the shape of the moon’s orbit, especially the concepts of apogee and perigee. Many people may assume that the moon orbits Earth in a perfect circle, when in fact its orbit is elliptical! The moon’s distance from Earth constantly varies, and so during its orbit it reaches both apogee (when it’s farthest from Earth), as well as perigee (closest to Earth). A supermoon occurs when the moon is at both perigee and in its full phase. That’s not rare; a full moon at closest approach to Earth can happen multiple times a year, as you may have noticed.

supermoon-size-brightness-640x350-1.png?
This activity is related to a Teachable Moment from Nov. 15, 2017. See “What Is a Supermoon and Just How Super Is It?”
Credit: NASA/JPL

While a human observer won’t be able to tell the difference between the size of a supermoon and a regular full moon, comparison photos taken with a telephoto lens can reveal the size difference between full moons. NASA has a classroom activity called Measuring the Supermoon where students can measure the size of the full moon month to month and compare their results.

Two photos of a full moon are presented, side by side. They are identical, except that the one on the left (labeled
Comparison of the size of an average full moon, compared to the size of a supermoon.
NASA/JPL-Caltech

Students can use digital cameras (or smartphones) to measure the moon, or they can simply measure the moon using nothing more than a pencil and paper! Both methods work and can be used depending on the style of teaching and available resources. 

/wp-content/plugins/nasa-blocks/assets/images/media/media-example-01.jpg
This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.
NASA, ESA, CSA, and STScI

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      One of the challenges many teachers face year after year is a sense of working alone. Despite the constant interaction with students many questions often linger: Did the lesson stick? Will students carry this knowledge with them? Will it shape how they see and engage with the world? What can be easy to overlook is that teaching does not happen in isolation. Each classroom, or any other educational setting, is part of a much larger journey that learners travel. This journey extends through a network of educators, where each experience can build on the last. These interconnected networks, known as Connected Learning Ecosystems (CLEs), exist wherever learning happens. At their core, CLEs are the collective of people who contribute to a young person’s growth and education over time.
      Educators at the August 2025 Connected Learning Ecosystems Gathering in Orono, ME engaged in discussion around using NASA data in their learning contexts. Recognizing this, NASA’s Science Activation Program launched the Learning Ecosystems Northeast (LENE) project to strengthen and connect regional educator networks across Maine and the broader Northeast. With a shared focus on Science, Technology, Engineering, and Mathematics (STEM), LENE brings together teachers, librarians, 4-H mentors, land trust educators, and many others committed to expanding scientific understanding, deepening data literacy, and preparing youth to navigate a changing planet. To support this work, LENE hosts biannual Connected Learning Ecosystem Gatherings. These multi-day events bring educators together to share progress, celebrate achievements, and plan future collaborations. More than networking, these gatherings reinforce the collective impact educators have, ensuring that their efforts resonate far beyond individual classrooms and enrich the lives of the learners they guide.
      “I am inspired by the GMRI staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of this the LENE community. This was a very well-run event! Thank you to all!” -anonymous


      This year’s Gathering took place August 12 and 13, 2025, in Orono, ME at the University of Maine (a LENE project partner). Nearly 70 educators from across the northeast came together for two amazingly energized days of connection, learning, and future planning. While each event is special, this summer’s Gathering was even more remarkable due to the fact that for, the first time, each workshop was led by an established LENE educator. Either by self-nomination or request from leadership (requiring little convincing), every learning experience shared over the conference days was guided by the thoughtful investigation and real life application of LENE Project Partners, CLE Lead Educators, and community collaborators.
      Brian Fitzgerald and Jackie Bellefontaine from the Mount Washington Observatory in New Hampshire, a LENE Project Partner, led the group through a hands-on activity using NASA data and local examples to observe extreme weather. Librarian Kara Reiman guided everyone through the creation and use of a newly established Severe Weather Disaster Prep Kit, including games and tools to manage climate anxiety. Katrina Heimbach, a long time CLE constituent from Western Maine taught how to interpret local data using a creative and fun weaving technique. Because of the established relationship between Learning Ecosystems Northeast and the University of Maine, attendees to the Gathering were able to experience a guided tour through the Advanced Structures and Composites Center and one of its creations, the BioHome3D – the world’s first 3D printed house made entirely with forest-derived, recyclable materials.
      Two full days of teachers leading teachers left the entire group feeling energized and encouraged, connected, and centered. The increased confidence in their practices gained by sustained support from their peers allowed these educators to step up and share – embodying the role of Subject Matter Expert. Seeing their colleagues take center stage makes it easier for other educators to envision themselves in similar roles and provides clear guidance on how to take those steps themselves. One educator shared their thoughts following the experience:
      “This was my first time attending the LENE conference, and I was immediately welcomed and made to feel ‘part of it all’. I made connections with many of the educators who were present, as well as the LENE staff and facilitators. I hope to connect with my new CLE mates in the near future!” Another participant reported, “I am inspired by the … staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of the LENE community. This was a very well-run event! Thank you to all!”
      Even with the backing of regional groups, many educators, especially those in rural communities, still struggle with a sense of isolation. The biannual gatherings play an important role in countering that, highlighting the fact that this work is unfolding across the state. Through Connected Learning Ecosystems, educators are able to build and reinforce networks that help close the gaps created by distance and geography.
      These Gatherings are part of ongoing programming organized by Learning Ecosystems Northeast, based at the Gulf of Maine Research Institute, that fosters peer communities across the Northeast, through which teachers, librarians, and out-of-school educators can collaborate to expand opportunities for youth to engage in data-driven investigations and integrate in- and out-of-school learning. Learn more about Learning Ecosystems Northeast’s efforts to empower the next generation of environmental stewards: https://www.learningecosystemsnortheast.org.
      The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/.
      Share








      Details
      Last Updated Sep 15, 2025 Related Terms
      Earth Science Science Activation Explore More
      13 min read The Earth Observer Editor’s Corner: July–September 2025


      Article


      5 days ago
      21 min read Summary of the 11th ABoVE Science Team Meeting


      Article


      5 days ago
      5 min read From NASA Citizen Scientist to Astronaut Training: An Interview with Benedetta Facini


      Article


      3 weeks ago
      View the full article
    • By NASA
      NASA Stennis Buffer ZoneNASA / Stennis NASA’s Stennis Space Center is widely known for rocket propulsion testing, especially to support the NASA Artemis program to send astronauts to the Moon to prepare for future human exploration of Mars.
      What may not be so widely known is that the site also is a unique federal city, home to more than 50 federal, state, academic, and commercial tenants and serving as both a model of government efficiency and a powerful economic engine for its region.
      “NASA Stennis is a remarkable story of vision and innovation,” Center Director John Bailey said. “That was the case 55 years ago when the NASA Stennis federal city was born, and it remains the case today as we collaborate and grow to meet the needs of a changing aerospace world.”
      Apollo Years
      Nearly four years after its first Saturn V stage test, NASA’s Stennis Space Center faced a crossroads to the future. Indeed, despite its frontline role in supporting NASA’s Apollo lunar effort, it was not at all certain a viable future awaited the young rocket propulsion test site.
      In 1961, NASA announced plans to build a sprawling propulsion test site in south Mississippi to support Apollo missions to the Moon. The news was a significant development for the sparsely populated Gulf Coast area.  
      The new site, located near Bay St. Louis, Mississippi, conducted its first hot fire of a Saturn V rocket stage in April 1966. Saturn V testing progressed steadily during the next years. In fall 1969, however, NASA announced an end to Apollo-related testing, leading to an existential crisis for the young test site.
      What was to become of NASA Stennis?
      An Expanded Vision
      Some observers speculated the location would close or be reduced to caretaker status, with minimal staffing. Either scenario would deliver a serious blow to the families who had re-located to make way for the site and the local communities who had heavily invested in municipal projects to support the influx of workforce personnel.
      Such outcomes also would run counter to assurances provided by leaders that the new test site would benefit its surrounding region and involve area residents in “something great.”
      For NASA Stennis manager Jackson Balch and others, such a result was unacceptable. Anticipating the crisis, Balch had been working behind the scenes to communicate – and realize – the vision of a multiagency site supporting a range of scientific and technological tenants and missions.
      A Pivotal Year
      The months following the Saturn V testing announcement were filled with discussions and planning to ensure the future of NASA Stennis. The efforts began to come to fruition in 1970 with key developments:
      In early 1970, NASA Administrator Thomas Paine proposed locating a regional environmental center at NASA Stennis. U.S. Sen. John C. Stennis (Mississippi) responded with a message of the president, “urgently requesting” that a National Earth Resources and Environmental Data Program be established at the site. In May 1970, President Richard Nixon offered assurances that an Earth Resources Laboratory would be established at NASA Stennis and that at least two agencies are preparing to locate operations at the site. U.S. congressional leaders earmarked $10 million to enable the location of an Earth Resources Laboratory at NASA Stennis. On July 9, 1970, the U.S. Coast Guard’s National Data Buoy Project (now the National Data Buoy Center) announced it was relocating to NASA Stennis, making it the first federal city tenant. The project arrived onsite two months later on September 9. On Sept. 9, 1970, NASA officially announced establishment of an Earth Resources Laboratory at NASA Stennis. Time to Grow
      By the end of 1970, Balch’s vision was taking shape, but it needed time to grow. The final Saturn V test had been conducted in October – with no new campaign scheduled.
      A possibility was on the horizon, however. NASA was building a reusable space shuttle vehicle. It would be powered by the most sophisticated rocket engine ever designed – and the agency needed a place to conduct developmental and flight testing expected to last for decades.
      Three sites vied for the assignment. Following presentations and evaluations, NASA announced its selection on March 1, 1971. Space shuttle engine testing would be conducted at NASA Stennis, providing time for the location to grow.
      A Collaborative Model
      By the spring of 1973, preparations for the space shuttle test campaign were progressing and NASA Stennis was on its way to realizing the federal city vision. Sixteen agencies and universities were now located at NASA Stennis.
      The resident tenants followed a shared model in which they shared in the cost of basic site services, such as medical, security, and fire protection. The shared model freed up more funding for the tenants to apply towards innovation and assigned mission work. It was a model of government collaboration and efficiency.
      As the site grew, leaders then began to call for it to be granted independent status within NASA, a development not long in coming. On June 14, 1974, just more than a decade after site construction began, NASA Administrator James Fletcher announced the south Mississippi location would be renamed National Space Technology Laboratories and would enjoy equal, independent status alongside other NASA centers.
      “Something Great”
      For NASA Stennis leaders and supporters, independent status represented a milestone moment in their effort to ensure NASA Stennis delivered on its promise of greatness.
      There still were many developments to come, including the first space shuttle main engine test and the subsequent 34-year test campaign, the arrival and growth of the U.S. Navy into the predominant resident presence onsite, the renaming of the center to NASA Stennis, and the continued growth of the federal city.
      No one could have imagined it all at the time. However, even in this period of early development, one thing was clear – the future lay ahead, and NASA Stennis was on its way.
      Read More About Stennis Space Center Share
      Details
      Last Updated Sep 09, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      4 min read NASA Stennis Provides Ideal Location for Range of Site Tenants
      Article 16 minutes ago 4 min read NASA Stennis Provides Ideal Setting for Range Operations
      Article 2 weeks ago 10 min read NASA’s Stennis Space Center Employees Receive NASA Honor Awards
      Article 4 weeks ago View the full article
    • By Amazing Space
      BLOOD MOON TONIGHT! Total Lunar Eclipse September 7, 2025 + 5 Amazing Moon Features You Can See!
    • By NASA
      4 Min Read La NASA revela los finalistas del concurso de diseño de la mascota lunar de Artemis II
      Read this story in English here.
      La NASA ya tiene 25 finalistas para el diseño del indicador de gravedad cero de Artemis II que volará con la tripulación de esta misión alrededor de la Luna y de regreso a la Tierra el próximo año.

      Los astronautas Reid Wiseman, Victor Glover y Christina Koch de la NASA, y el astronauta de la CSA (Agencia Espacial Canadiense) Jeremy Hansen pronto seleccionarán uno de los diseños finalistas para que les acompañe dentro de la nave espacial Orion como su mascota lunar.

      “El indicador de gravedad cero de Artemis II será especial para la tripulación”, dijo Reid Wiseman, comandante de Artemis II. “En una nave espacial llena de equipos y herramientas complejas que mantienen viva a la tripulación en el espacio profundo, el indicador es una forma amigable y útil de resaltar el elemento humano que es tan crítico para nuestra exploración del universo. Nuestra tripulación está entusiasmada con estos diseños provenientes de muchos lugares del mundo y esperamos con interés llevar al ganador con nosotros en este viaje”.

      Un indicador de gravedad cero es un pequeño peluche que típicamente viaja con la tripulación para indicar visualmente el momento en que llegan al espacio. Durante los primeros ocho minutos después del despegue, la tripulación y el indicador, que estará situado cerca de ellos, seguirán siendo presionados contra sus asientos por la gravedad y la fuerza de la subida al espacio. Cuando se apaguen los motores principales de la etapa central del cohete Sistema de Lanzamiento Espacial (SLS, por sus siglas en inglés), se eliminarán las restricciones de la gravedad, pero la tripulación seguirá atada de manera segura a sus asientos: la capacidad de flotar de su indicador de gravedad cero será la evidencia de que han llegado al espacio.

      Artemis II será la primera misión en la que el público haya participado en la creación de la mascota de la tripulación.

      Estos diseños, con ideas que abarcan desde versiones lunares de criaturas terrestres hasta visiones creativas sobre la exploración y el descubrimiento, fueron seleccionados entre más de 2.600 propuestas procedentes de más de 50 países, e incluyen diseños de estudiantes desde primaria a secundaria. Los finalistas representan a 10 países, entre los que están Estados Unidos, Canadá, Colombia, Finlandia, Francia, Alemania, Japón, Perú, Singapur y Gales.

      Mira aquí los diseños finalistas:

      Lucas Ye | Mountain View, California“Rise” Kenan Ziyan | Canyon, Texas“Zappy Zebra” Royal School, SKIES Space Club | Winnipeg, Manitoba, Canada“Luna the Space Polar Bear” Garden County Schools | Oshkosh, Nebraska“Team GarCo” Richellea Quinn Wijaya | Singapore“Parsec – The Bird That Flew to the Moon” Anzhelika Iudakova | Finland“Big Steps of Little Octopus” Congressional School | Falls Church, Virginia“Astra-Jelly” Congressional School | Falls Church, Virginia“Harper, Chloe, and Mateo’s ZGI” Alexa Pacholyk | Madison, Connecticut“Artemis” Leila Fleury | Rancho Palos Verdes, California“Beeatrice” Oakville Trafalgar School | Oakville, Ontario, Canada“Lepus the Moon Rabbit” Avon High School | Avon, Connecticut“Sal the Salmon” Daniela Colina | Lima, Peru“Corey the Explorer” Caroline Goyer-Desrosiers | St. Eustache, Quebec, Canada“Flying Squirrel Ready for Its Take Off to Space!” Giulia Bona | Berlin, Germany“Art & the Giant” Tabitha Ramsey | Frederick, Maryland“Lunar Crust-acean” Gabriela Hadas | Plano, Texas“Celestial Griffin” Savon Blanchard | Pearland, Texas“Soluna Flier” Ayako Moriyama | Kyoto, Japan“MORU: A Cloud Aglow with Moonlight and Hope” Johanna Beck | McPherson, Kansas“Creation Mythos” Guillaume Truong | Toulouse, France“Space Mola-mola (aka Moon Fish) Plushie” Arianna Robins | Rockledge, Florida“Terra the Titanosaurus” Sandy Moya | Madrid, Colombia“MISI: Guardian of the Journey” Bekah Crowmer | Mooresville, Indiana“Mona the Moon Moth” Courtney John | Llanelli, Wales“Past, Present, Future” En marzo, la NASA anunció que buscaba propuestas de creadores de todo el mundo para el diseño de un indicador de gravedad cero que volaría a bordo de Artemis II, la primera misión tripulada de la campaña Artemis de la NASA. Se pidió a los creadores que presentaran ideas que representaran la importancia de Artemis, la misión, o la exploración y el descubrimiento, y que cumplieran con requisitos específicos de tamaño y materiales. La empresa de crowdsourcing (colaboración abierta) Freelancer sirvió como facilitadora del concurso en nombre de la NASA, a través del Laboratorio de Campeonatos de la NASA, el cual es gestionado por la Dirección de Misiones de Tecnología Espacial de la agencia.

      Una vez que la tripulación haya seleccionado un diseño final, el Laboratorio de Mantas Térmicas de la NASA lo fabricará para el vuelo. El indicador estará amarrado dentro de Orion antes del lanzamiento.

      La misión, que tendrá alrededor de 10 días de duración, es otro paso adelante hacia misiones en la superficie lunar y sirve como preparación para futuras misiones tripuladas a Marte de la agencia.

      Mediante Artemis II, la NASA enviará astronautas a explorar la Luna para llevar a cabo descubrimientos científicos, obtener beneficios económicos y sentar las bases para las primeras misiones tripuladas a Marte.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Lunar Environment Structural Test Rig simulates the intense cold of the lunar night, ranging from 40 Kelvin (K) to 125 K while maintaining a vacuum environment. This creates a tool by which scientists and engineers can test materials, electronics, and flight hardware for future Moon and Mars missions, characterizing their behaviors at these temperatures while also validating their ability to meet design requirements.
      Cryogenic engineer Adam Rice tests the Lunar Environment Structural Test Rig to simulate the thermal-vacuum conditions of the lunar night on Thursday, May 22, 2025.NASA/Jef Janis Facility Overview
      The Lunar Environment Structural Test Rig (LESTR) approaches the problem of creating a simulated lunar environment by departing from typical fluid immersion or jacketed-and-chilled chamber systems. It does this by using a cryocooler to reject heat and bring the test section to any point desired by the test engineer, as low as 40 K or as high as 125 K in a vacuum environment. By combining high vacuum and cryogenic temperatures, LESTR enables safe, accurate, and cost-effective testing of materials and hardware destined for the Moon and beyond. Its modular setup supports a wide range of components — from spacesuits to rover wheels to electronics — while laying the foundation for future Moon and Mars mission technologies.
      Quick Facts
      LESTR is a cryogenic mechanical test system built up within a conventional load frame with the goal of providing a tool to simulate the thermal-vacuum conditions of the lunar night to engineers tasked with creating the materials, tools, and machinery to succeed in NASA’s missions.
      LESTR replicates extreme lunar night environments — including temperatures as low as 40 K and high vacuum (<5×10⁻⁷ Torr) — enabling true-to-space testing without liquid cryogens. Unlike traditional “wet” methods, LESTR uses a cryocooler and vacuum system to create an environment accurate to the lunar surface. From rover wheels to spacesuits to electronics, LESTR supports static and dynamic testing across a wide range of Moon and Mars mission hardware. With scalable architecture and precision thermal control, LESTR lays critical groundwork for advancing the technologies of NASA’s Artemis missions and beyond. Capabilities
      Specifications
      Temperature Range: 40 K to 125 K Load Capacity: ~10 kN Vacuum Level: <5×10⁻⁷ Torr Test Volume (Cold Box Dimensions): 7.5 by 9.5 by 11.5 inches Maximum Cycle Rate: 100 Hz Time to Vacuum:10⁻⁵ Torr in less than one hour 10⁻⁶ Torr in four hours Features
      Dry cryogenic testing (no fluid cryogen immersion) “Dial-a-temperature” control for precise thermal conditions Integrated optical extensometer for strain imaging Digital image correlation and electrical feedthroughs support a variety of data collection methods Native support for high-duration cyclic testing Applications
      Cryogenic Lifecycle Testing: fatigue, fracture, and durability assessments Low-Frequency Vibration Testing: electronics qualification for mobility systems Static Load Testing: material behavior characterization in lunar-like environments Suspension and Drivetrain Testing: shock absorbers, wheels, springs, and textiles Textiles Testing: evaluation of spacesuits and habitat fabrics Dynamic Load Testing: up to 10 kN linear capacity, 60 mm stroke Contact
      Cryogenic and Mechanical Evaluation Lab Manager: Andrew Ring
      216-433-9623
      Andrew.J.Ring@nasa.gov
      LESTR Technical Lead: Ariel Dimston
      216-433-2893
      Ariel.E.Dimston@nasa.gov
      Using Our Facilities
      NASA’s Glenn Research Center in Cleveland provides ground test facilities to industry, government, and academia. If you are considering testing in one of our facilities or would like further information about a specific facility or capability, please let us know.
      Gallery
      The Lunar Environment Structural Test Rig simulates the intense cold of the lunar night on Friday, June 6, 2025.NASA/Steven Logan The Lunar Environment Structural Test Rig uses a cryocooler to reject heat and bring the test section as low as 40 Kelvin in a vacuum environment on Thursday, May 22, 2025.NASA/Jef Janis Keep Exploring Discover More Topics From NASA
      Aeronautics Research
      NASA Glenn Virtual Tours
      Hubble Space Telescope (A)
      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
      Gemini
      View the full article
  • Check out these Videos

×
×
  • Create New...