Members Can Post Anonymously On This Site
NASA’s C-20A Studies Extreme Weather Events
-
Similar Topics
-
By NASA
From left to right, NASA’s Carruthers Geocorona Observatory, IMAP (Interstellar Mapping and Acceleration Probe), and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On-Lagrange 1 (SWFO-L1) missions will map our Sun’s influence across the solar system in new ways. Credit: NASA NASA will provide live coverage of prelaunch and launch activities for an observatory designed to study space weather and explore and map the boundaries of our solar neighborhood.
Launching with IMAP (Interstellar Mapping and Acceleration Probe) are two rideshare missions, NASA’s Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On-Lagrange 1 (SWFO-L1), both of which will provide insight into space weather and its impacts at Earth and across the solar system.
Liftoff of the missions on a SpaceX Falcon 9 rocket is targeted for 7:32 a.m. EDT, Tuesday, Sept. 23, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Watch coverage beginning at 6:40 a.m. on NASA+, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
The IMAP spacecraft will study how the Sun’s energy and particles interact with the heliosphere — an enormous protective bubble of space around our solar system — to enhance our understanding of space weather, cosmic radiation, and their impacts on Earth and human and robotic space explorers. The spacecraft and its two rideshares will orbit approximately one million miles from Earth, positioned toward the Sun at a location known as Lagrange Point 1.
NASA’s Carruthers Geocorona Observatory is a small satellite that will observe Earth’s outermost atmospheric layer, the exosphere. It will image the faint glow of ultraviolet light from this region, called the geocorona, to better understand how space weather impacts our planet. The Carruthers mission continues the legacy of the Apollo era, expanding on measurements first taken during Apollo 16.
The SWFO-L1 spacecraft will monitor space weather and detect solar storms in advance, serving as an early warning beacon for potentially disruptive space weather, helping safeguard Earth’s critical infrastructure and technological-dependent industries. The SWFO-L1 spacecraft is the first NOAA observatory designed specifically for and fully dedicated to continuous, operational space weather observations.
Media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
Sunday, Sept. 21
2:30 p.m. – NASA Prelaunch News Conference on New Space Weather Missions
Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Brad Williams, IMAP program executive, NASA Headquarters Irene Parker, deputy assistant administrator for Systems at NOAA’s National Environmental Satellite, Data, and Information Service Denton Gibson, launch director, NASA’s Launch Services Program, NASA Kennedy Julianna Scheiman, director, NASA Science Missions, SpaceX Arlena Moses, launch weather officer, 45th Weather Squadron, U.S. Space Force Watch the briefing on the agency’s website or NASA’s YouTube channel.
Media may ask questions in person or via phone. Limited auditorium space will be available for in-person participation for previously credentialed media. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
3:45 p.m. – NASA, NOAA Science News Conference on New Space Weather Missions
Joe Westlake, director, Heliophysics Division, NASA Headquarters David McComas, IMAP principal investigator, Princeton University Lara Waldrop, Carruthers Geocorona Observatory principal investigator, University of Illinois Urbana-Champaign Jamie Favors, director, Space Weather Program, Heliophysics Division, NASA Headquarters Clinton Wallace, director, NOAA Space Weather Prediction Center James Spann, senior scientist, NOAA Office of Space Weather Observations Watch the briefing on the agency’s website or NASA’s YouTube channel.
Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov. Members of the public may ask questions on social media using the hashtag #AskNASA.
Monday, Sept. 22
11:30 a.m. – In-person media one-on-one interviews with the following:
Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Kieran Hegarty, IMAP project manager, Johns Hopkins University Applied Physics Lab Jamie Rankin, IMAP instrument lead for Solar Wind and Pickup Ion, Princeton University John Clarke, Carruthers deputy principal investigator, Boston University Dimitrios Vassiliadis, SWFO-L1 program scientist, NOAA Brent Gordon, deputy director, NOAA Space Weather Prediction Center Remote media may request a one-on-one video interview online by 3 p.m. on Thursday, Sept. 18.
Tuesday, Sept. 23
6:40 a.m. – Launch coverage begins on NASA+, Amazon Prime and more. NASA’s Spanish launch coverage begins on NASA+, and the agency’s Spanish-language YouTube channel.
7:32 a.m. – Launch
Audio-Only Coverage
Audio-only of the launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, or -1240. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, will be carried on 321-867-7135.
NASA Website Launch Coverage
Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 6 a.m., Sept. 23, as the countdown milestones occur. Streaming video and photos of the launch will be accessible on demand shortly after liftoff. Follow countdown coverage on the IMAP blog.
For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468.
Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con María-José Viñas: maria-jose.vinasgarcia@nasa.gov.
Attend Launch Virtually
Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
Watch, Engage on Social Media
Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts:
X: @NASA, @NASAKennedy, @NASASolarSystem, @NOAASatellies
Facebook: NASA, NASA Kennedy, NASA Solar System, NOAA Satellites
Instagram: @NASA, @NASAKennedy, @NASASolarSystem, @NOAASatellites
For more information about these missions, visit:
https://www.nasa.gov/sun
-end-
Abbey Interrante
Headquarters, Washington
301-201-0124
abbey.a.interrante@nasa.gov
Sarah Frazier
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
Leejay Lockhart
Kennedy Space Center, Fla.
321-747-8310
leejay.lockhart@nasa.gov
John Jones-Bateman
NOAA’s Satellite and Information Service, Silver Spring, Md.
202-242-0929
john.jones-bateman@noaa.gov
Share
Details
Last Updated Sep 15, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Heliophysics Division Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics IMAP (Interstellar Mapping and Acceleration Probe) Kennedy Space Center Science Mission Directorate View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
While auroras are a beautiful sight on Earth, the solar activity that causes them can wreak havoc with space-based infrastructure like satellites. Using artificial intelligence to predict these disruptive solar events was a focus of KX’s work with FDL.Credit: Sebastian Saarloos In the summer of 2024, people across North America were amazed when auroras lit up the night sky across their hometowns, but the same solar activity that makes auroras can cause disruptions to satellites that are essential to systems on Earth. The solution to predicting these solar events and warning satellite operators may come through artificial intelligence.
The Frontier Development Lab of Mountain View, California, is an ongoing partnership between NASA and commercial AI firms to apply advanced machine learning to problems that matter to the agency and beyond. Since 2016, the Frontier Development Lab has applied AI on behalf of NASA in planetary defense, Heliophysics, Earth science, medicine, and lunar exploration.
Through a collaboration with a company called KX Systems, the Frontier Development Lab looked to use proven software in an innovative new way. The company’s flagship data analytics software, called kdb+, is typically used in the financial industry to keep track of rapid shifts in market trends, but the company was exploring how it could be used in space.
Between 2017 and 2019, KX Systems participated in the Frontier Development Lab partnership through NASA’s Ames Research Center in Silicon Valley, California. Working with NASA scientists, KX applied the capabilities of kdb+ to searching for exoplanets and predicting space weather, areas which could be improved with AI models. One question the Frontier Development Lab worked to answer was whether kdb+ could forecast the kind of space weather that creates the auroras to predict when GPS satellites might experience signal interruption due to the Sun.
By importing several datasets monitoring the ionosphere, solar activity, and Earth’s magnetic field, then applying machine learning algorithms to them, the Frontier Development Lab researchers were able to predict disruptive events up to 24 hours in advance.
While this was a scientific application of AI, KX Systems says some of this development work has made it back into its commercial offerings, as there are similarities between AI models developed to find patterns in satellite signal losses and ones that predict maintenance needs for industrial manufacturing equipment.
A division of FD Technologies plc., KX Systems is a technology company that offers database management and analytics software for customers that need to make decisions quickly. While KX started in 1993, its AI-driven business has grown considerably, and the company credits work done with NASA for accelerating some of its capabilities.
From protecting valuable satellites to keeping manufacturing lines moving at top performance, pairing NASA’s expertise with commercial ingenuity is a combination for success.
Read More Share
Details
Last Updated Sep 09, 2025 Related Terms
Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
3 min read NASA-Developed Printable Metal Can Take the Heat
Article 4 weeks ago 5 min read NASA Releases Opportunity to Boost Commercial Space Tech Development
Article 1 month ago 3 min read NASA-Derived Textiles are Touring France by Bike
Article 2 months ago Keep Exploring Discover Related Topics
Missions
Technology Transfer and Spinoffs News
Auroras
Auroras, often called the northern lights (aurora borealis) or southern lights (aurora australis), are colorful, dynamic, and often visually delicate…
Solar System
View the full article
-
By NASA
NASA and Northrop Grumman are preparing to send the company’s next cargo mission to the International Space Station, flying research to support Artemis missions to the Moon and human exploration of Mars and beyond, while improving life on Earth. SpaceX’s Falcon 9 rocket will launch Northrop Grumman’s 23rd commercial resupply services mission to the orbiting laboratory.
The investigations aboard the Cygnus spacecraft aim to refine semiconductor crystals for next-generation technologies, reduce harmful microbes, improve medication production, and manage fuel pressure.
NASA, Northrop Grumman, and SpaceX are targeting launch in mid-September from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
Read about some of the investigations traveling to the space station:
Better semiconductor crystals
Optical micrograph of a semiconductor composite wafer with embedded semimetal phases extracted from a space grown crystal in the SUBSA facility during Mission 1United Semiconductors LLC Researchers are continuing to fine-tune in-space production of semiconductor crystals, which are critical for modern devices like cellphones and computers.
The space station’s microgravity environment could enable large-scale manufacturing of complex materials, and leveraging the orbiting platform for crystal production is expected to lead to next-generation semiconductor technologies with higher performance, chip yield, and reliability.
“Semiconductor devices fabricated using crystals from a previous mission demonstrated performance gain by a factor of two and device yield enhanced by a factor of 10 compared to Earth-based counterparts,” said Partha S. Dutta, principal investigator, United Semiconductors LLC in Los Alamitos, California.
Dutta highlighted that three independent parties validated microgravity’s benefits for growing semiconductor crystals and that the commercial value of microgravity-enhanced crystals could be worth more than $1 million per kilogram (2.2 pounds).
Space-manufactured crystals could help meet the need for radiation-hardened, low-power, high-speed electronics and sensors for space systems. They also could provide reduced power use, increased speed, and improved safety. The technology also has ground applications, including electric vehicles, waste heat recovery, and medical tools.
Learn more about the SUBSA-InSPA-SSCug experiment.
Lethal light
Germicidal Ultraviolet (UV) light is emitted by an optical fiber running through the center of an agar plateArizona State University Researchers are examining how microgravity affects ultraviolet (UV) light’s ability to prevent the formation of biofilms — communities of microbes that form in water systems. Investigators developed special optical fibers to deliver the UV light, which could provide targeted, long-lasting, and chemical-free disinfection in space and on Earth.
“In any water-based system, bacterial biofilms can form on surfaces like pipes, valves, and sensors,” said co-investigator Paul Westerhoff, a professor at Arizona State University in Tempe. “This can cause serious problems like corrosion and equipment failure, and affect human health.”
The UV light breaks up DNA in microorganisms, preventing them from reproducing and forming biofilms. Preliminary evidence suggests biofilms behave differently in microgravity, which may affect how the UV light reaches and damages bacterial DNA.
“What we’ll learn about biofilms and UV light in microgravity could help us design safer water and air systems not just for space exploration, but for hospitals, homes, and industries back on Earth,” Westerhoff said.
Learn more about the GULBI experiment.
Sowing seeds for pharmaceuticals
NASA astronaut Loral O’Hara displays the specialized sample processor used for pharmaceutical research aboard the International Space StationNASA An investigation using a specialized pharmaceutical laboratory aboard the space station examines how microgravity may alter and enhance crystal structures of drug molecules. Crystal structure can affect the production, storage, effectiveness, and administration of medications.
“We are exploring drugs with applications in cardiovascular, immunologic, and neurodegenerative disease as well as cancer,” said principal investigator Ken Savin of Redwire Space Technologies in Greenville, Indiana. “We expect microgravity to yield larger, more uniform crystals.”
Once the samples return to Earth, researchers at Purdue University in West Lafayette, Indiana, will examine the crystal structures.
The investigators hope to use the space-made crystals as seeds to produce significant numbers of crystals on Earth.
“We have demonstrated this technique with a few examples, but need to see if it works in many examples,” Savin said. “It’s like being on a treasure hunt with every experiment.”
This research also helps enhance and expand commercial use of the space station for next-generation biotechnology research and in-space production of medications.
Learn more about the ADSEP PIL-11 experiment.
Keeping fuel cool
iss0NASA astronaut Joe Acaba installs hardware for the first effort in 2017 aboard the International Space Station to test controlling pressure in cryogenic fuel tanksNASA Many spacecraft use cryogenic or extremely cold fluids as fuel for propulsion systems. These fluids are kept at hundreds of degrees below zero to remain in a liquid state, making them difficult to use in space where ambient temperatures can vary significantly. If these fluids get too warm, they turn into gas and boiloff, or slowly evaporate and escape the tank, affecting fuel efficiency and mission planning.
A current practice to prevent this uses onboard fuel to cool systems before transferring fuel, but this practice is wasteful and not feasible for Artemis missions to the Moon and future exploration of Mars and beyond. A potential alternative is using special gases that do not turn into liquids at cold temperatures to act as a barrier in the tank and control the movement of the fuel.
Researchers are testing this method to control fuel tank pressure in microgravity. It could save an estimated 42% of propellant mass per year, according to Mohammad Kassemi, a researcher at NASA’s National Center for Space Exploration Research and Case Western Reserve University in Cleveland.
The test could provide insights that help improve the design of lightweight, efficient, long-term in-space cryogenic storage systems for future deep space exploration missions.
Learn more about the ZBOT-NC experiment.
Download high-resolution photos and videos of the research highlighted in this feature.
Learn more about the research aboard the International Space Station at:
www.nasa.gov/iss-science
Keep Exploring Discover More Topics From NASA
Latest News from Space Station Research
Space Station Research and Technology Resources
Space Station Research Results
Humans In Space
View the full article
-
By European Space Agency
Less than three weeks since the first MetOp Second Generation weather satellite, MetOp-SG-A1, was launched, this remarkable new satellite has already started transmitting data from two of its cutting-edge instruments, offering a tantalising glimpse of what’s to come.
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.