Jump to content

What's behind the mystery drones hovering over U.S. and U.K. military bases?


Recommended Posts

Posted
Since late November 2024 there is something is going on and no one has the answer to why there are ongoing incursions of unidentified drones over U.S. and U.K. military bases, nuclear installations and areas such as New Jersey and Manchester Airport.

mystery%20drones%20ufo%20s%20(3).jpg

For example, over the past 72 hours, again there have been numerous reports of large, car-sized drones or UFOs seen in the US (New Jersey, Arizona, North Carolina, Texas) and the UK too. 

mystery%20drones%20ufo%20s%20(1).jpg

These drones often flying in formations displaying advanced capabilities such as coordination, range, endurance, and the ability to evade detection and interception. Despite multiple sightings, none have been recovered or identified, and no physical descriptions or origins have been confirmed. 

Key details: 

Activity: 
The drones have penetrated restricted airspace repeatedly, often in swarms of a dozen or more. 

Capabilities: 
The drones exhibit advanced coordination and endurance, suggesting sophisticated technology.  

Response: 
The U.S. Air Force acknowledges the incursions but states that they have not disrupted operations. Investigations are ongoing in collaboration with U.K. authorities. 

Speculation: 
Potential origins range from Russia or China to commercial or recreational sources. However, their behavior and capabilities seem to exceed typical drone technology. Even there is speculation about an upcoming false flag alien/UFO invasion.

Government Inaction: 
Criticism is directed at the Pentagon and other authorities for not addressing the issue or taking action to remove the objects, especially given their proximity to critical infrastructure. 

The FBI and other authorities are reportedly focused on potential UFO or drone activities, particularly on or around December 3rd, which some claim was predicted to be significant by an individual known for accurately forecasting the 2003 Indonesian tsunami. 

Media Suppression: 
Reports indicate that some footage and discussions about the sightings have been censored or removed. 

Historical Context: 
The events resemble past UFO sightings at military installations, such as the 1975 U.S. military base incursions, where objects displayed extraordinary flight capabilities and eluded interception. 

The situation remains unresolved, raising questions about the drones' origins, purpose, and implications for military security. 

Whether they are advanced foreign drones or something more extraordinary, the lack of evidence and official explanations fuels speculation whether these sightings represent a security threat. 

More information is awaited from ongoing investigations and official responses. 

mystery%20drones%20ufo%20s%20(2).jpg

Several links/discussions of reported drone/UFO sightings: 

Manchester Airport UFO sighting from inside the cockpit plus Clear shot of Airport UAP https://www.youtube.com/watch?v=6zkZ3x1T0QU 

Drones? UFOs? What's flying over the UK Bases? 
https://www.youtube.com/watch?v=Zy4feLBNQq8 

UFO Invasion?! "They're the size of cars spotted over New Jersey 
https://www.youtube.com/watch?v=iBLa6lUi5fg 

Drone/ UFO sighting over the Duke Nuclear Power Plant https://x.com/digijordan/status/1862721088544772434

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The Department of the Air Force released additional guidance for implementation of Executive Order 14183, "Prioritizing Military Excellence and Readiness,"
      View the full article
    • By NASA
      NASA’s Nancy Grace Roman Space Telescope will be a discovery machine, thanks to its wide field of view and resulting torrent of data. Scheduled to launch no later than May 2027, with the team working toward launch as early as fall 2026, its near-infrared Wide Field Instrument will capture an area 200 times larger than the Hubble Space Telescope’s infrared camera, and with the same image sharpness and sensitivity. Roman will devote about 75% of its science observing time over its five-year primary mission to conducting three core community surveys that were defined collaboratively by the scientific community. One of those surveys will scour the skies for things that pop, flash, and otherwise change, like exploding stars and colliding neutron stars.
      These two images, taken one year apart by NASA’s Hubble Space Telescope, show how the supernova designated SN 2018gv faded over time. The High-Latitude Time-Domain Survey by NASA’s Nancy Grace Roman Space Telescope will spot thousands of supernovae, including a specific type that can be used to measure the expansion history of the universe.Credit: NASA, ESA, Martin Kornmesser (ESA), Mahdi Zamani (ESA/Hubble), Adam G. Riess (STScI, JHU), SH0ES Team Called the High-Latitude Time-Domain Survey, this program will peer outside of the plane of our Milky Way galaxy (i.e., high galactic latitudes) to study objects that change over time. The survey’s main goal is to detect tens of thousands of a particular type of exploding star known as type Ia supernovae. These supernovae can be used to study how the universe has expanded over time. 
      “Roman is designed to find tens of thousands of type Ia supernovae out to greater distances than ever before,” said Masao Sako of the University of Pennsylvania, who served as co-chair of the committee that defined the High-Latitude Time-Domain Survey. “Using them, we can measure the expansion history of the universe, which depends on the amount of dark matter and dark energy. Ultimately, we hope to understand more about the nature of dark energy.”
      Probing Dark Energy
      Type Ia supernovae are useful as cosmological probes because astronomers know their intrinsic luminosity, or how bright they inherently are, at their peak. By comparing this with their observed brightness, scientists can determine how far away they are. Roman will also be able to measure how quickly they appear to be moving away from us. By tracking how fast they’re receding at different distances, scientists will trace cosmic expansion over time.
      Only Roman will be able to find the faintest and most distant supernovae that illuminate early cosmic epochs. It will complement ground-based telescopes like the Vera C. Rubin Observatory in Chile, which are limited by absorption from Earth’s atmosphere, among other effects. Rubin’s greatest strength will be in finding supernovae that happened within the past 5 billion years. Roman will expand that collection to much earlier times in the universe’s history, about 3 billion years after the big bang, or as much as 11 billion years in the past. This would more than double the measured timeline of the universe’s expansion history.
      Recently, the Dark Energy Survey found hints that dark energy may be weakening over time, rather than being a constant force of expansion. Roman’s investigations will be critical for testing this possibility.
      Seeking Exotic Phenomena
      To detect transient objects, whose brightness changes over time, Roman must revisit the same fields at regular intervals. The High-Latitude Time-Domain Survey will devote a total of 180 days of observing time to these observations spread over a five-year period. Most will occur over a span of two years in the middle of the mission, revisiting the same fields once every five days, with an additional 15 days of observations early in the mission to establish a baseline. 
      This infographic describes the High-Latitude Time-Domain Survey that will be conducted by NASA’s Nancy Grace Roman Space Telescope. The survey’s main component will cover over 18 square degrees — a region of sky as large as 90 full moons — and see supernovae that occurred up to about 8 billion years ago.Credit: NASA’s Goddard Space Flight Center “To find things that change, we use a technique called image subtraction,” Sako said. “You take an image, and you subtract out an image of the same piece of sky that was taken much earlier — as early as possible in the mission. So you remove everything that’s static, and you’re left with things that are new.”
      The survey will also include an extended component that will revisit some of the observing fields approximately every 120 days to look for objects that change over long timescales. This will help to detect the most distant transients that existed as long ago as one billion years after the big bang. Those objects vary more slowly due to time dilation caused by the universe’s expansion.
      “You really benefit from taking observations over the entire five-year duration of the mission,” said Brad Cenko of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, the other co-chair of the survey committee. “It allows you to capture these very rare, very distant events that are really hard to get at any other way but that tell us a lot about the conditions in the early universe.”
      This extended component will collect data on some of the most energetic and longest-lasting transients, such as tidal disruption events — when a supermassive black hole shreds a star — or predicted but as-yet unseen events known as pair-instability supernovae, where a massive star explodes without leaving behind a neutron star or black hole.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This sonification that uses simulated data from NASA’s OpenUniverse project shows the variety of explosive events that will be detected by NASA’s Nancy Grace Roman Space Telescope and its High-Latitude Time-Domain Survey. Different sounds represent different types of events, as shown in the key at right. A single kilonova seen about 12 seconds into the video is represented with a cannon shot. The sonification sweeps backward in time to greater distances from Earth, and the pitch of the instrument gets lower as you move outward. (Cosmological redshift has been converted to a light travel time expressed in billions of years.) Credit: Sonification: Martha Irene Saladino (STScI), Christopher Britt (STScI); Visualization: Frank Summers (STScI); Designer: NASA, STScI, Leah Hustak (STScI) Survey Details
      The High-Latitude Time-Domain Survey will be split into two imaging “tiers” —  a wide tier that covers more area and a deep tier that will focus on a smaller area for a longer time to detect fainter objects. The wide tier, totaling a bit more than 18 square degrees, will target objects within the past 7 billion years, or half the universe’s history. The deep tier, covering an area of 6.5 square degrees, will reach fainter objects that existed as much as 10 billion years ago. The observations will take place in two areas, one in the northern sky and one in the southern sky. There will also be a spectroscopic component to this survey, which will be limited to the southern sky.
      “We have a partnership with the ground-based Subaru Observatory, which will do spectroscopic follow-up of the northern sky, while Roman will do spectroscopy in the southern sky. With spectroscopy, we can confidently tell what type of supernovae we’re seeing,” said Cenko.
      Together with Roman’s other two core community surveys, the High-Latitude Wide-Area Survey and the Galactic Bulge Time-Domain Survey, the High-Latitude Time-Domain Survey will help map the universe with a clarity and to a depth never achieved before.
      Download the sonification here.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc. in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Christine Pulliam
      Space Telescope Science Institute, Baltimore, Md.
      Share
      Details
      Last Updated Aug 12, 2025 EditorAshley BalzerLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Dark Energy Neutron Stars Stars Supernovae The Universe Explore More
      6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 4 months ago 6 min read Why NASA’s Roman Mission Will Study Milky Way’s Flickering Lights
      Article 2 years ago 7 min read One Survey by NASA’s Roman Could Unveil 100,000 Cosmic Explosions
      Article 4 weeks ago View the full article
    • By European Space Agency
      Video: 00:01:45 Experience the preparation of the MetOp-SG-A1 satellite, hosting Copernicus Sentinel-5, scheduled for liftoff on an Ariane 6 rocket from Europe’s Spaceport in Kourou, French Guiana, on 13 August 2025 at 02:37 CEST (12 August 21:37 Kourou time). This timelapse video captures key stages from the encapsulation within the Ariane 6 fairing to the installation in the launch tower.
      MetOp-SG-A1 is the first in a series of three successive pairs of satellites. The mission as a whole not only ensures the continued delivery of global observations from polar orbit for weather forecasting and climate analysis for more than 20 years, but also offers enhanced accuracy and resolution compared to the original MetOp mission – along with new measurement capabilities to expand its scientific reach.
      This new weather satellite also carries the Copernicus Sentinel-5 mission to deliver daily global data on air pollutants and atmospheric trace gases as well as aerosols and ultraviolet radiation.
      View the full article
    • By NASA
      Of all the possible entry points to NASA, the agency’s SkillBridge Program has been instrumental in helping servicemembers transition from the military and into civilian careers. Offered in partnership with the Department of Defense (DoD), the program enables individuals to spend their final months of military service working with a NASA office or organization. SkillBridge fellows work anywhere from 90 to 180 days, contributing their unique skillsets to the agency while building their network and knowledge.

      The Johnson Space Center in Houston hosted NASA’s first SkillBridge fellow in 2019, paving the way for dozens of others to follow. SkillBridge participants are not guaranteed a job offer at the end of their fellowship, but many have gone on to accept full-time positions with NASA. About 25 of those former fellows currently work at Johnson, filling roles as varied as their military experiences.

      Miguel Shears during his military service (left) and his SkillBridge fellowship at Johnson Space Center.Images courtesy of Miguel Shears Miguel Shears retired from the Marine Corps in November 2023. He ended his 30 years of service as the administration, academics, and operations chief for the Marine Corps University in Quantico, Virginia, where he was also an adjunct professor. Shears completed a SkillBridge fellowship with FOD in the summer and fall of 2023, supporting the instructional systems design team. He was hired as a full-time employee upon his military retirement and currently serves as an instructional systems designer for the Instructor Training Module, Mentorship Module, and Spaceflight Academy. He conducts training needs analysis for FOD, as well.

      Ever Zavala as a flight test engineer in the U.S. Air Force (left) and as a capsule communicator in the Mission Control Center at Johnson Space Center.Images courtesy of Ever Zavala Ever Zavala was very familiar with Johnson before becoming a SkillBridge fellow. He spent the last three of his nearly 24-year Air Force career serving as the deputy director of the DoD Human Spaceflight Payloads Office at Johnson. His team oversaw the development, integration, launch, and operation of payloads hosting DoD experiments on small satellites and the International Space Station. He also became a certified capsule communicator, or capcom, in December 2022, and was the lead capcom for SpaceX’s 28th commercial resupply services mission to the orbiting laboratory.

      Zavala’s SkillBridge fellowship was in Johnson’s Astronaut Office, where he worked as a capcom, capcom instructor, and an integration engineer supporting the Extravehicular Activity and Human Surface Mobility Program. He was involved in developing a training needs analysis and agency simulators for the human landing system, among other projects.

      He officially joined the center team as a full-time contractor in August 2024. He is currently a flight operations safety officer within the Flight Operations Directorate (FOD) and continues to serve as a part-time capcom.

      Carl Johnson with his wife during his first visit to Johnson Space Center (left) and completing some electrical work as part of his SkillBridge fellowship. Images courtesy of Carl Johnson Carl Johnson thanks his wife for helping him find a path to NASA. While she was a Pathways intern — and his girlfriend at the time — she gave him a tour of the center that inspired him to join the agency when he was ready to leave the Army. She helped connect him to one of the center’s SkillBridge coordinators and the rest is history.

      Johnson was selected for a SkillBridge fellowship in the Dynamic System Test Branch. From February to June 2023, he supported development of the lunar terrain vehicle ground test unit and contributed to the Active Response Gravity Offload System (ARGOS), which simulates reduced gravity for astronaut training.

      Johnson officially joined the center team as an electrical engineer in the Engineering Directorate’s Software, Robotics, and Simulation Division in September 2023. He is currently developing a new ARGOS spacewalk simulator and training as an operator and test director for another ARGOS system. 

      Johnson holds an electrical engineering degree from the United States Military Academy. He was on active duty in the Army for 10 years and concluded his military career as an instructor and small group leader for the Engineer Captains Career Course. In that role, he was responsible for instructing, mentoring, and preparing the next generation of engineer captains.

      Kevin Quinn during his Navy service.Image courtesy of Kevin Quinn Kevin Quinn served in the Navy for 22 years. His last role was maintenance senior chief with Air Test and Evaluation Squadron 31, known as “the Dust Devils.” Quinn managed the operations and maintenance of 33 aircraft, ensuring their readiness for complex missions and contributing to developmental flight tests and search and rescue missions. He applied that experience to his SkillBridge fellowship in quality assurance at Ellington Field in 2024. Quinn worked to enhance flight safety and astronaut training across various aircraft, including the T-38, WB-57, and the Super Guppy. He has continued contributing to those projects since being hired as a full-time quality assurance employee in 2025.

      Andrew Ulat during his Air Force career. Image courtesy of Andrew Ulat Andrew Ulat retired from the Air Force after serving for 21 years as an intercontinental ballistic missile launch control officer and strategic operations advisor. His last role in the military was as a director of staff at the Air Command and Staff College at Maxwell Air Force Base in Montgomery, Alabama. There he served as a graduate-level instructor teaching international security concepts to mid-level officers and civilian counterparts from all branches of the military and various federal agencies. 

      Ulat started his SkillBridge fellowship as an integration engineer in Johnson’s X-Lab, supporting avionics, power, and software integration for the Gateway lunar space station. Ulat transitioned directly from his fellowship into a similar full-time position at Johnson in May 2024.

      Ariel Vargas receives a commendation during his Army service (left) and in his official NASA portrait. Ariel Vargas transitioned to NASA after serving for five years in the Army. His last role in the military was as a signal officer, which involved leading teams managing secure communications and network operations in dynamic and mission-critical environments in the Middle East and the United States.

      Vargas completed his SkillBridge fellowship in November 2023, supporting Johnson’s Office of the Chief Information Officer (OCIO). During his fellowship, he led a center-wide wireless augmentation project that modernized Johnson’s connectivity.

      He became a full-time civil servant in May 2024 and currently serves as the business operations and partnerships lead within OCIO, supporting a digital transformation initiative. In this role, he leads efforts to streamline internal business operations, manage strategic partnerships, and drive cross-functional collaboration.

      “My time in the military taught me the value of service, leadership, and adaptability—qualities that I now apply daily in support of NASA’s mission,” Vargas said. “I’m proud to be part of the Johnson team and hope my story can inspire other service members considering the SkillBridge pathway.”
      Explore More
      3 min read Melissa Harris: Shaping NASA’s Vision for a Future in Low Earth Orbit
      Article 2 days ago 5 min read Protected: Glenn Extreme Environments Rig (GEER)
      Article 3 days ago 5 min read Chief Training Officer Teresa Sindelar Touches the Future of Human Spaceflight
      Article 3 days ago View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4600-4601: Up and Over the Sand Covered Ramp
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on July 13, 2025 — Sol 4598, or Martian day 4,598 of the Mars Science Laboratory mission — at 15:24:10 UTC. NASA/JPL-Caltech Written by Sharon Wilson Purdy, Planetary Geologist at the Smithsonian National Air and Space Museum
      Earth planning date: Monday, July 14, 2025
      The Curiosity rover continues to navigate through the region of Mount Sharp characterized by the boxwork terrain.  After successfully completing a drive of about 34 meters over the weekend (about 112 feet), the rover parked near the edge of a smooth, sandy stretch at the base of a ridge that leads to the most prominent and complex network of boxwork structures seen so far.
      Due to the lack of exposed bedrock in the immediate workspace, the science team opted to give some of the rover’s contact science instruments a break. With the dust removal tool (DRT) and APXS instruments stowed, the extra energy allowed the Mars Hand Lens Imager (MAHLI) to take high resolution images of “Playa de la Gallina” to survey the uniform, smooth surface consisting of sand and pebble-sized material.
      The ChemCam and Mastcam teams scheduled several observations in this two-sol plan that further investigated the rocks and structures in our immediate vicinity and surroundings. ChemCam LIBS was used to target “El Olivo” to determine the chemistry of the bumpy textured bedrock near the rover, which was also imaged by a Mastcam stereo mosaic. Additional Mastcam stereo mosaics include fractures at “El Corral” and linear troughs at “Chapare.” Further away, ChemCam’s Remote Micro Imager (RMI) will provide insight into an intriguing section of scoured features within the Mishe Mokwa butte.
      The environmental working group continues to keep an eye in the sky and planned a supra-horizon movie and a dust-devil survey as part of their ongoing monitoring campaign of the atmospheric conditions in Gale Crater.
      The 21-meter-long drive (about 69 feet) at the end of this plan will maneuver the rover past the sandy ramp to the top of the main boxwork region. From here, the science team will be able to explore this fascinating area of particularly large boxwork structures. Stay tuned as Curiosity continues to climb higher and delve deeper into the geologic history of Mars!

      For more Curiosity blog posts, visit MSL Mission Updates


      Learn more about Curiosity’s science instruments

      Share








      Details
      Last Updated Jul 16, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4597-4599: Wide Open Spaces


      Article


      1 hour ago
      3 min read Curiosity Blog, Sols 4595-4596: Just Another Beautiful Day on Mars


      Article


      23 hours ago
      4 min read Curiosity Blog, Sols 4593-4594: Three Layers and a Lot of Structure at Volcán Peña Blanca


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...