Members Can Post Anonymously On This Site
Coming Spring 2025: Planetary Defenders Documentary
-
Similar Topics
-
By NASA
This artist’s concept animation shows the orbital dynamics of KOI-134 system which, in 2025, a paper revealed to have two planets: KOI-134 b and KOI-134 c. NASA/JPL-Caltech/K. Miller (Caltech/IPAC) The Planets
KOI-134 b and KOI-134 c
This artist’s concept shows the KOI-134 system which, in 2025, a paper revealed to have two planets: KOI-134 b and KOI-134 c. NASA/JPL-Caltech/K. Miller (Caltech/IPAC) The Discovery
A new investigation into old Kepler data has revealed that a planetary system once thought to house zero planets actually has two planets which orbit their star in a unique style, like an old-fashioned merry-go-round.
Key Facts
The KOI-134 system contains two planets which orbit their star in a peculiar fashion on two different orbital planes, with one planet exhibiting significant variation in transit times. This is the first-discovered system of its kind.
Details
Over a decade ago, scientists used NASA’s Kepler Space Telescope to observe the KOI-134 system and thought that it might have a planet orbiting, but they deemed this planet candidate to be a false positive, because its transits (or passes in front of its star) were not lining up as expected. These transits were so abnormal that the planet was actually weeded out through an automated system as a false positive before it could be analyzed further.
However, NASA’s commitment to openly sharing scientific data means that researchers can constantly revisit old observations to make new discoveries. In this new study, researchers re-analyzed this Kepler data on KOI-134 and confirmed that not only is the “false positive” actually a real planet, but the system has two planets and some really interesting orbital dynamics!
First, the “false positive” planet, named KOI-134 b, was confirmed to be a warm Jupiter (or a warm planet of a similar size to Jupiter). Through this analysis, researchers uncovered that the reason this planet eluded confirmation previously is because it experiences what are called transit timing variations (TTVs), or small differences in a planet’s transit across its star that can make its transit “early” or “late” because the planet is being pushed or pulled by the gravity from another planet which was also revealed in this study. Researchers estimate that KOI-134 b transits across its star as much as 20 hours “late” or “early,” which is a significant variation. In fact, it was so significant that it’s the reason why the planet wasn’t confirmed in initial observations.
As these TTVs are caused by the gravitational interaction with another planet, this discovery also revealed a planetary sibling: KOI-134 c. Through studying this system in simulations that include these TTVs, the team found that KOI-134 c is a planet slightly smaller than Saturn and closer to its star than KOI-134 b.
This artist’s concept shows the KOI-134 system which, in 2025, a paper revealed to have two planets: KOI-134 b and KOI-134 c. NASA/JPL-Caltech/K. Miller (Caltech/IPAC) KOI-134 c previously eluded observation because it orbits on a tilted orbital plane, a different plane from KOI-134 b, and this tilted orbit prevents the planet from transiting its star. The two orbital planes of these planets are about 15 degrees different from one another, also known as a mutual inclination of 15 degrees, which is significant. Due to the gravitational push and pull between these two planets, their orbital planes also tilt back and forth.
Another interesting feature of this planetary system is something called resonance. These two planets have a 2 to 1 resonance, meaning within the same time that one planet completes one orbit, the other completes two orbits. In this case, KOI-134 b has an orbital period (the time it takes a planet to complete one orbit) of about 67 days, which is twice the orbital period of KOI-134 c, which orbits every 33-34 days.
Between the separate orbital planes tilting back and forth, the TTVs, and the resonance, the two planets orbit their star in a pattern that resembles two wooden ponies bobbing up and down as they circle around on an old-fashioned merry go round.
Fun Facts
While this system started as a false positive with Kepler, this re-analysis of the data reveals a vibrant system with two planets. In fact, this is the first-ever discovered compact, multiplanetary system that isn’t flat, has such a significant TTV, and experiences orbital planes tilting back and forth.
Also, most planetary systems do not have high mutual inclinations between close planet pairs. In addition to being a rarity, mutual inclinations like this are also not often measured because of challenges within the observation process. So, having measurements like this of a significant mutual inclination in a system, as well as measurements of resonance and TTVs, provides a clear picture of dynamics within a planetary system which we are not always able to see.
The Discoverers
A team of scientists led by Emma Nabbie of the University of Southern Queensland published a paper on June 27 on their discovery, “A high mutual inclination system around KOI-134 revealed by transit timing variations,” in the journal “Nature Astronomy.” The observations described in this paper and used in simulations in this paper were made by NASA’s Kepler Space Telescope and the paper included collaboration and contributions from institutions including the University of Geneva, University of La Laguna, Purple Mountain Observatory, the Harvard-Smithsonian Center for Astrophysics, the Georgia Institute of Technology, the University of Southern Queensland, and NASA’s retired Kepler Space Telescope.
View the full article
-
By NASA
Skywatching Skywatching Home What’s Up Meteor Showers Eclipses Daily Moon Guide More Tips & Guides Skywatching FAQ Night Sky Network A.M./P.M. Planet Watching, Plus the Eagle Constellation
Mars shines in the evening, and is joined briefly by Mercury. Jupiter joins Venus as the month goes on. And all month, look for Aquila the eagle.
Skywatching Highlights
All Month – Planet Visibility:
Venus: Shines brightly in the east each morning during the couple of hours before sunrise, with the Pleiades and bright stars Aldebaran and Capella. Mars: Sits in the west, about 20 degrees above the horizon as twilight fades. Sets a couple of hours after dark. Jupiter: Starts to become visible low in the east in the hour before sunrise after mid-month. You’ll notice it rises a bit higher each day through August, quickly approaching closer to Venus each morning. Mercury: Visible very low in the west (10 degrees or lower) the first week or so in July. Find it for a short time before it sets, beginning 30-45 minutes after sunset. Saturn: Rises around midnight and climbs to a point high in the south as dawn approaches. Daily Highlights:
July 1 – 7 – Mercury is relatively bright and easy to spot without a telescope, beginning about 30-45 minutes after sunset for the first week or so of July. You will need an unobstructed view toward the horizon, and note that it sets within an hour after the Sun.
July 21 & 22 – Moon, Venus, & Jupiter – Look toward the east this morning to find a lovely scene, with the crescent Moon and Venus, plus several bright stars. And if you have a clear view toward the horizon, Jupiter is there too, low in the sky.
July 28 – Moon & Mars – The crescent Moon appears right next to Mars this evening after sunset.
All month – Constellation: Aquila – The Eagle constellation, Aquila, appears in the eastern part of the sky during the first half of the night. Its brightest star, Altair, is the southernmost star in the Summer Triangle, which is an easy-to-locate star pattern in Northern Hemisphere summer skies.
Transcript
What’s Up for July? Mars shines in the evening sky, sixty years after its first close-up,
July Planet Viewing
Venus brightens your mornings, and the eagle soars overhead.
First up, Mercury is visible for a brief time following sunset for the first week of July. Look for it very low in the west 30 to 45 minutes after sundown. It sets within the hour after that, so be on the ball if you want to catch it!
Mars is visible for the first hour or two after it gets dark. You’ll find it sinking lower in the sky each day and looking a bit dimmer over the course of the month, as our two planets’ orbits carry them farther apart. The crescent Moon appears right next to Mars on the 28th.
Sky chart showing Mercury and Mars in the western sky following sunset in early July. NASA/JPL-Caltech July is the 60th anniversary of the first successful flyby of Mars, by NASA’s Mariner 4 spacecraft in 1965. Mariner 4 sent back the first photos of another planet from deep space, along with the discovery that the Red Planet has only a very thin, cold atmosphere.
Next, Saturn is rising late in the evening, and by dawn it’s high overhead to the south.
Looking to the morning sky, Venus shines brightly all month. You’ll find it in the east during the couple of hours before sunrise, with the Pleiades and bright stars Aldebaran and Capella. And as the month goes on, Jupiter makes its morning sky debut,
Sky chart showing Venus in the morning sky in July. NASA/JPL-Caltech rising in the hour before sunrise and appearing a little higher each day.
By the end of the month, early risers will have the two brightest planets there greeting them each morning. They’re headed for a super-close meetup in mid-August, and the pair will be a fixture of the a.m. sky through late this year. Look for them together with the crescent moon on the 21st and 22nd.
Aquila, The Eagle
From July and into August, is a great time to observe the constellation Aquila, the eagle.
Sky chart showing the shape and orientation of the constellation Aquila in the July evening sky. Aquila’s brightest star, Altair, is part of the Summer Triangle star pattern. NASA/JPL-Caltech This time of year, it soars high into the sky in the first half of the night. Aquila represents the mythical eagle that was a powerful servant and messenger of the Greek god Zeus. The eagle carried his lightning bolts and was a symbol of his power as king of the gods.
To find Aquila in the sky, start by locating its brightest star, Altair. It’s one the three bright stars in the Summer Triangle, which is super easy to pick out during summer months in the Northern Hemisphere. Altair is the second brightest of the three, and sits at the southernmost corner of the triangle.
The other stars in Aquila aren’t as bright as Altair, which can make observing the constellation challenging if you live in an area with a lot of light pollution. It’s easier, though, if you know how the eagle is oriented on the sky. Imagine it’s flying toward the north with its wings spread wide, its right wing pointed toward Vega. If you can find Altair, and Aquila’s next brightest star, you can usually trace out the rest of the spread-eagle shape from there. The second half of July is the best time of the month to observe Aquila, as the Moon doesn’t rise until later then, making it easier to pick out the constellation’s fainter stars.
Observing the constellation Aquila makes for a worthy challenge in the July night sky. And once you’re familiar with its shape, it’s hard not to see the mythical eagle soaring overhead among the summertime stars.
Here are the phases of the Moon for July.
The phases of the Moon for July 2025. NASA/JPL-Caltech You can stay up to date on all of NASA’s missions exploring the solar system and beyond at science.nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
An Update From the 2025 Mars 2020 Science Team Meeting
A behind-the-scenes look at the annual Mars 2020 Science Team Meeting
Members of the Mars 2020 Science Team examine post-impact sediments within the Gardnos impact structure, northwest of Oslo, Norway, as part of the June 2025 Science Team Meeting. NASA/Katie Stack Morgan Written by Katie Stack Morgan, Mars 2020 Acting Project Scientist
The Mars 2020 Science Team gathered for a week in June to discuss recent science results, synthesize earlier mission observations, and discuss future plans for continued exploration of Jezero’s crater rim. It was also an opportunity to celebrate what makes this mission so special: one of the most capable and sophisticated science missions ever sent to Mars, an experienced and expert Science Team, and the rover’s many science accomplishments this past year.
We kicked off the meeting, which was hosted by our colleagues on the RIMFAX team at the University of Oslo, with a focus on our most recent discoveries on the Jezero crater rim. A highlight was the team’s in-depth discussion of spherules observed at Witch Hazel Hill, features which likely provide us the best chance of determining the origin of the crater rim rock sequence.
On the second day, we heard status updates from each of the science instrument teams. We then transitioned to a session devoted to “traverse-scale” syntheses. After 4.5 years of Perseverance on Mars and more than 37 kilometers of driving (more than 23 miles), we’re now able to analyze and integrate science datasets across the entire surface mission, looking for trends through space and time within the Jezero rock record. Our team also held a poster session, which was a great opportunity for in-person and informal scientific discussion.
The team’s modern atmospheric and environmental investigations were front and center on Day 3. We then rewound the clock, hearing new and updated analyses of data acquired during Perseverance’s earlier campaigns in Jezero’s Margin unit, crater floor, and western fan. The last day of the meeting was focused entirely on future plans for the Perseverance rover, including a discussion of our exploration and sampling strategy during the Crater Rim Campaign. We also looked further afield, considering where the rover might explore over the next few years.
Following the meeting, the Science Team took a one-day field trip to visit Gardnos crater, a heavily eroded impact crater with excellent examples of impact melt breccia and post-impact sediment fill. The team’s visit to Gardnos offered a unique opportunity to see and study impact-generated rock units like those expected on the Jezero crater rim and to discuss the challenges we have recognizing similar units with the rover on Mars. Recapping our Perseverance team meetings has been one of my favorite yearly traditions (see summaries from our 2022, 2023, and 2024 meetings) and I look forward to reporting back a year from now. As the Perseverance team tackles challenges in the year to come, we can seek inspiration from one of Norway’s greatest polar explorers, Fridtjof Nansen, who said while delivering his Nobel lecture, “The difficult is that which can be done at once; the impossible is that which takes a little longer.”
Share
Details
Last Updated Jul 01, 2025 Related Terms
Blogs Explore More
2 min read Curiosity Blog, Sols 4584–4585: Just a Small Bump
Article
1 hour ago
4 min read Curiosity Blog, Sols 4582-4583: A Rock and a Sand Patch
Article
3 days ago
2 min read Curiosity Blog, Sols 4580-4581: Something in the Air…
Article
5 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Sigrid Reinsch, Lori Munar, Kevin Sims, and Matthew Fladeland. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
Space Biosciences Star: Sigrid Reinsch
As Director of the SHINE (Space Health Impacts for the NASA Experience) program and Project Scientist for NBISC (NASA Biological Institutional Scientific Collection), Sigrid Reinsch is a high-performing scientist and outstanding mentor in the Space Biosciences Research Branch. Her dedication to student training and her efforts to streamline processes have significantly improved the experience of welcoming summer interns at NASA Ames.
Space Science and Astrobiology Star: Lori Munar
Lori Munar serves as the assistant Branch Chief of the Exobiology Branch. In the past few months, she has gone above and beyond to organize a facility and laboratory surplus event that involved multiple divisions over multiple days. The event resulted in considerable savings across the groups involved and improved the safety of N239 staff and the appearance of offices and labs.
Space Science and Astrobiology Star: Kevin Sims
Kevin Sims is a NASA Technical Project Manager serving the Astrophysics Branch as a member of the Flight Systems Implementation Branch in the Space Biosciences Division. Kevin is recognized for outstanding project management for exoplanet imaging instrumentation development in support of the Habitable Worlds Observatory. Kevin has streamlined, organized, and improved the efficiency of the Ames Photonics Testbed being developed as part the AstroPIC Early Career Initiative project.
Earth Science Star: Matthew Fladeland
Matthew Fladeland is a research scientist in the Earth Science Division managing NASA SMD’s Program Office for the Airborne Science Program, located at Ames. He is recognized for exemplary leadership and teamwork leading to new reimbursable agreements with the Department of Defense, for accelerating science technology solutions through the SBIR program, and for advancing partnerships with the US Forest Service on wildland ecology and fire science.
View the full article
-
By NASA
Artist’s concept.Credit: NASA NASA announced Monday its latest plans to team up with a streaming service to bring space a little closer to home. Starting this summer, NASA+ live programming will be available on Netflix.
Audiences now will have another option to stream rocket launches, astronaut spacewalks, mission coverage, and breathtaking live views of Earth from the International Space Station.
“The National Aeronautics and Space Act of 1958 calls on us to share our story of space exploration with the broadest possible audience,” said Rebecca Sirmons, general manager of NASA+ at the agency’s headquarters in Washington. “Together, we’re committed to a Golden Age of Innovation and Exploration – inspiring new generations – right from the comfort of their couch or in the palm of their hand from their phone.”
Through this partnership, NASA’s work in science and exploration will become even more accessible, allowing the agency to increase engagement with and inspire a global audience in a modern media landscape, where Netflix reaches a global audience of more than 700 million people.
The agency’s broader efforts include connecting with as many people as possible through video, audio, social media, and live events. The goal is simple: to bring the excitement of the agency’s discoveries, inventions, and space exploration to people, wherever they are.
NASA+ remains available for free, with no ads, through the NASA app and on the agency’s website.
Additional programming details and schedules will be announced ahead of launch.
For more about NASA’s missions, visit:
https://www.nasa.gov
-end-
Cheryl Warner
Headquarters, Washington
202-358-1600
cheryl.m.warner@nasa.gov
Share
Details
Last Updated Jun 30, 2025 LocationNASA Headquarters Related Terms
Brand Partnerships NASA+ View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.