Jump to content

Recommended Posts

Posted
Creating_artificial_eclipses_to_study_th Video: 00:09:01

Proba-3 is such an ambitious mission that it needs more than one single spacecraft to succeed. In order for Proba-3’s Coronagraph spacecraft to observe the Sun’s faint surrounding atmosphere, its disk-bearing Occulter spacecraft must block out the fiery solar disk. This means Proba-3’s Occulter ends up facing the Sun continuously, making it a valuable platform for science in its own right.

Proba-3 is scheduled for launch on a PSLV-XL rocket from Satish Dhawan Space Centre in Sriharikota, India, on Wednesday, 4 December, at 11:38 CET (10:38 GMT, 16:08 local time).

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Can the Sun Really Disappear for 6 Minutes Today?
    • By NASA
      NASA’s TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission launched at 2:13 p.m. EDT atop a SpaceX Falcon 9 rocket at Space Launch Complex 4 East at Vandenberg Space Force Base in California. Credit: SpaceX NASA’s newest mission, TRACERS, soon will begin studying how Earth’s magnetic shield protects our planet from the effects of space weather. Short for Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, the twin TRACERS spacecraft lifted off at 11:13 a.m. PDT (2:13 p.m. EDT) Wednesday aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
      “NASA is proud to launch TRACERS to demonstrate and expand American preeminence in space science research and technology,” said acting NASA Administrator Sean Duffy. “The TRACERS satellites will move us forward in decoding space weather and further our understanding of the connection between Earth and the Sun. This mission will yield breakthroughs that will advance our pursuit of the Moon, and subsequently, Mars.”
      The twin satellites will fly one behind the other – following as closely as 10 seconds apart over the same location – and will take a record-breaking 3,000 measurements in one year to build a step-by-step picture of how magnetic reconnection changes over time.
      Riding along with TRACERS aboard the Falcon 9 were NASA’s Athena EPIC (Economical Payload Integration Cost), PExT (Polylingual Experimental Terminal), and REAL (Relativistic Electron Atmospheric Loss) missions – three small satellites to demonstrate new technologies and gather scientific data. These three missions were successfully deployed, and mission controllers will work to contact them over the coming hours and days.
      Ground controllers for the TRACERS mission established communications with the second of the two spacecraft at 3:43 p.m. PDT (6:43 p.m. EDT), about 3 hours after it separated from the rocket. During the next four weeks, TRACERS will undergo a commissioning period during which mission controllers will check out their instruments and systems.
      Once cleared, the twin satellites will begin their 12-month prime mission to study a process called magnetic reconnection, answering key questions about how it shapes the impacts of the Sun and space weather on our daily lives.
      “NASA’s heliophysics fleet helps to safeguard humanity’s home in space and understand the influence of our closest star, the Sun,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “By adding TRACERS to that fleet, we will gain a better understanding of those impacts right here at Earth.”
      The two TRACERS spacecraft will orbit through an open region in Earth’s magnetic field near the North Pole, called the polar cusp. Here, TRACERS will investigate explosive magnetic events that happen when the Sun’s magnetic field – carried through space in a stream of solar material called the solar wind – collides with Earth’s magnetic field. This collision creates a buildup of energy that causes magnetic reconnection, when magnetic field lines snap and explosively realign, flinging away nearby particles at high speeds.
      Flying through the polar cusp allows the TRACERS satellites to study the results of these magnetic explosions, measuring charged particles that race down into Earth’s atmosphere and collide with atmospheric gases – giving scientist the tools to reconstruct exactly how changes in the incoming solar wind affect how, and how quickly, energy and particles are coupled into near-Earth space.
      “The successful launch of TRACERS is a tribute to many years of work by an excellent team,” said David Miles, TRACERS principal investigator at the University of Iowa. “TRACERS is set to transform our understanding of Earth’s magnetosphere. We’re excited to explore the dynamic processes driving space weather.”
      Small Satellites Along for Ride
      Athena EPIC is a pathfinder mission that will demonstrate NASA’s use of an innovative and configurable commercial SmallSat architecture to improve flexibility of payload designs, reduce launch schedule, and reduce overall costs in future missions, as well as the benefits of working collaboratively with federal partners. In addition to this demonstration for NASA, once the Athena EPIC satellite completes its two-week commissioning period, the mission will spend the next 12 months taking measurements of outgoing longwave radiation from Earth.
      The PExT demonstration will test interoperability between commercial and government communication networks for the first time by demonstrating a wideband polylingual terminal in low Earth orbit. This terminal will use software-defined radios to jump between government and commercial networks, similar to cell phones roaming between providers on Earth. These terminals could allow future missions to switch seamlessly between networks and access new commercial services throughout its lifecycle in space.
      The REAL mission is a CubeSat that will investigate how energetic electrons are scattered out of the Van Allen radiation belts and into Earth’s atmosphere. Shaped like concentric rings high above Earth’s equator, the Van Allen belts are composed of a mix of high-energy electrons and protons that are trapped in place by Earth’s magnetic field. Studying electrons and their interactions, REAL aims to improve our understanding of these energetic particles that can damage spacecraft and imperil astronauts who pass through them. 
      The TRACERS mission is led by David Miles at the University of Iowa with support from the Southwest Research Institute in San Antonio, Texas. NASA’s Heliophysics Explorers Program Office at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the Heliophysics Division at NASA Headquarters in Washington. The University of Iowa, Southwest Research Institute, University of California, Los Angeles, and the University of California, Berkeley, all lead instruments on TRACERS.
      The Athena EPIC mission is led by NASA’s Langley Research Center in Hampton, Virginia, and is a partnership between National Oceanic and Atmospheric Administration, U.S. Space Force, and NovaWurks. Athena EPIC’s launch is supported by launch integrator SEOPS. The PExT demonstration is managed by NASA’s SCaN (Space Communications and Navigation) program in partnership with Johns Hopkins Applied Physics Laboratory, with launch support by York Space Systems. The REAL project is led by Dartmouth College in Hanover, New Hampshire, and is a partnership between Johns Hopkins Applied Physics Laboratory, Montana State University, and Boston University. Sponsored by NASA’s Heliophysics Division and CubeSat Launch Initiative, it was included through launch integrator Maverick Space Systems.
      NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR (Venture-class Acquisition of Dedicated and Rideshare) contract.
      To learn more about TRACERS, visit:
      https://nasa.gov/tracers
      -end-
      Abbey Interrante / Karen Fox
      Headquarters, Washington
      301-201-0124 / 202-358-1600
      abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Maryland
      202-853-7191
      sarah.frazier@nasa.gov
      Share
      Details
      Last Updated Jul 23, 2025 LocationNASA Headquarters Related Terms
      TRACERS Earth Science Science Mission Directorate View the full article
    • By NASA
      As the Sun approaches the most active part of its eleven-year magnetic cycle this summer, NASA volunteers have been watching it closely. Now they’ve spotted a new trend in solar behavior that will have you reaching for your suntan lotion. It’s all about something called a “Type II” solar radio burst:
      “Type II solar radio bursts are not commonly detected in the frequency range between 15 to 30 megahertz,” said Prof. Chuck Higgins, Co-founder of Radio JOVE. “Recently, we’re seeing many of them in that range.”
      Let’s unpack that. Our Sun often sprays powerful blasts of radio waves into space. Heliophysicists classify these radio bursts into five different types depending on how the frequency of the radio waves drifts over time. “Type II” solar radio bursts seem to come from solar flares and enormous squirts of hot plasma called coronal mass ejections.
      Now, Thomas Freeman, an undergraduate student at Middle Tennessee State University, and other volunteers working on NASA’s Radio JOVE project have observed something interesting about these Type II bursts: they are now showing up at lower frequencies—somewhere in between FM and AM radio. 
      What does it mean? It means our star is full of surprises! These Radio JOVE observations of the Sun’s radio emissions during solar maximum can be used to extend our knowledge of solar emissions to lower frequencies and, therefore, to distances farther from the Sun. 
      Radio JOVE is a NASA partner citizen science project in which participants assemble and operate radio astronomy telescopes to gather and contribute data to support scientific studies.  Radio JOVE collaborated with SunRISE Ground Radio Lab,  organized teams of high school students to observe the Sun, and recently published a paper on these Type II solar radio bursts. Learn more and get involved!  
      A Type II solar radio burst on April 23rd, 2024, seen as the gently sloping yellow band drifting from 17:49 to 18:02 UTC in the 15-30 MHz radio frequency-time spectrogram. Credit: Tom Ashcraft, Lamy, NM Share








      Details
      Last Updated Jul 23, 2025 Related Terms
      Citizen Science Heliophysics Explore More
      2 min read Bring NASA Science into Your Library!


      Article


      2 days ago
      4 min read NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator
      July will see the launch of the groundbreaking Solar EruptioN Integral Field Spectrograph mission, or…


      Article


      6 days ago
      6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield


      Article


      7 days ago
      View the full article
    • By NASA
      4 min read
      NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator
      July will see the launch of the groundbreaking Solar EruptioN Integral Field Spectrograph mission, or SNIFS. Delivered to space via a Black Brant IX sounding rocket, SNIFS will explore the energy and dynamics of the chromosphere, one of the most complex regions of the Sun’s atmosphere. The SNIFS mission’s launch window at the White Sands Missile Range in New Mexico opens on Friday, July 18. 
      The chromosphere is located between the Sun’s visible surface, or photosphere, and its outer layer, the corona. The different layers of the Sun’s atmosphere have been researched at length, but many questions persist about the chromosphere. “There’s still a lot of unknowns,” said Phillip Chamberlin, a research scientist at the University of Colorado Boulder and principal investigator for the SNIFS mission.  
      The reddish chromosphere is visible on the Sun’s right edge in this view of the Aug. 21, 2017, total solar eclipse from Madras, Oregon.Credit: NASA/Nat Gopalswamy The chromosphere lies just below the corona, where powerful solar flares and massive coronal mass ejections are observed. These solar eruptions are the main drivers of space weather, the hazardous conditions in near-Earth space that threaten satellites and endanger astronauts. The SNIFS mission aims to learn more about how energy is converted and moves through the chromosphere, where it can ultimately power these massive explosions.  
      “To make sure the Earth is safe from space weather, we really would like to be able to model things,” said Vicki Herde, a doctoral graduate of CU Boulder who worked with Chamberlin to develop SNIFS.  
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This footage from NASA’s Solar Dynamics Observatory shows the Sun in the 304-angstrom band of extreme ultraviolet light, which primarily reveals light from the chromosphere. This video, captured on Feb. 22, 2024, shows a solar flare — as seen in the bright flash on the upper left.Credit: NASA/SDO The SNIFS mission is the first ever solar ultraviolet integral field spectrograph, an advanced technology combining an imager and a spectrograph. Imagers capture photos and videos, which are good for seeing the combined light from a large field of view all at once. Spectrographs dissect light into its various wavelengths, revealing which elements are present in the light source, their temperature, and how they’re moving — but only from a single location at a time. 
      The SNIFS mission combines these two technologies into one instrument.  
      “It’s the best of both worlds,” said Chamberlin. “You’re pushing the limit of what technology allows us to do.” 
      By focusing on specific wavelengths, known as spectral lines, the SNIFS mission will help scientists to learn about the chromosphere. These wavelengths include a spectral line of hydrogen that is the brightest line in the Sun’s ultraviolet (UV) spectrum, and two spectral lines from the elements silicon and oxygen. Together, data from these spectral lines will help reveal how the chromosphere connects with upper atmosphere by tracing how solar material and energy move through it. 
      The SNIFS mission will be carried into space by a sounding rocket. These rockets are effective tools for launching and carrying space experiments and offer a valuable opportunity for hands-on experience, particularly for students and early-career researchers.
      (From left to right) Vicki Herde, Joseph Wallace, and Gabi Gonzalez, who worked on the SNIFS mission, stand with the sounding rocket containing the rocket payload at the White Sands Missile Range in New Mexico.Credit: courtesy of Phillip Chamberlin “You can really try some wild things,” Herde said. “It gives the opportunity to allow students to touch the hardware.” 
      Chamberlin emphasized how beneficial these types of missions can be for science and engineering students like Herde, or the next generation of space scientists, who “come with a lot of enthusiasm, a lot of new ideas, new techniques,” he said. 
      The entirety of the SNIFS mission will likely last up to 15 minutes. After launch, the sounding rocket is expected to take 90 seconds to make it to space and point toward the Sun, seven to eight minutes to perform the experiment on the chromosphere, and three to five minutes to return to Earth’s surface.  
      A previous sounding rocket launch from the White Sands Missile Range in New Mexico. This mission carried a copy of the Extreme Ultraviolet Variability Experiment (EVE).
      Credit: NASA/University of Colorado Boulder, Laboratory for Atmospheric and Space Physics/James Mason The rocket will drift around 70 to 80 miles (112 to 128 kilometers) from the launchpad before its return, so mission contributors must ensure it will have a safe place to land. White Sands, a largely empty desert, is ideal. 
      Herde, who spent four years working on the rocket, expressed her immense excitement for the launch. “This has been my baby.” 
      By Harper Lawson
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jul 17, 2025 Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division Science & Research Sounding Rockets Sounding Rockets Program Wallops Flight Facility Explore More
      6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield
      Article 1 day ago 3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
      Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…
      Article 1 day ago 4 min read NASA Research Shows Path Toward Protocells on Titan
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Amazing Space
      LIVE : Sun Live stream - close up Video Of The Sun / Lunt Telescope - Backyard Astronomy
  • Check out these Videos

×
×
  • Create New...