Jump to content

Recommended Posts

  • Publishers
Posted
A black piece of equipment with small silver pieces all over it is at the center of this image. This is what houses Gateway's fuel tanks. A person in a blue hairnet, mask, white lab coat, and jeans stands on an orange lift that is several feet in the air. Another person in similar clothing is at the bottom of the piece of equipment at the center of this image. An American flag hangs vertically on the wall.
Maxar Space Systems

Technicians guide the equipment that will house Gateway’s xenon and liquid fuel tanks in this photo from July 1, 2024. The tanks are part of Gateway’s Power and Propulsion Element, which will make the lunar space station the most powerful solar electric spacecraft ever flown. Once fully assembled and launched to lunar orbit, the Power and Propulsion Element’s roll-out solar arrays will harness the Sun’s energy to energize xenon gas and produce the thrust to get Gateway to the Moon’s orbit where it will await the arrival of its first crew on the Artemis IV mission.

Image credit: Maxar Space Systems

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A team from South Dakota State University with their project, “Soil Testing and Plant Leaf Extraction Drone,” took first place at the 2025 Gateways to Blue Skies Forum held May 20-21 in Palmdale, California. Advisor Todd Lechter, left, along with team members Nick Wolles, Keegan Visher, Nathan Kuehl and Laura Peterson, and graduate advisor Allea Klauenberg, right, accepted the award.NASA A team from South Dakota State University, with their project titled “Soil Testing and Plant Leaf Extraction Drone” took first place at the 2025 NASA Gateways to Blue Skies Competition, which challenged student teams to research aviation solutions to support U.S. agriculture.
      The winning project proposed a drone-based soil and tissue sampling process that would automate a typically labor-intensive farming task. The South Dakota State team competed among eight finalists at the 2025 Blue Skies Forum May 20-21 in Palmdale, California, near NASA’s Armstrong Flight Research Center. Subject matter experts from NASA and industry served as judges.
      “This competition challenges students to think creatively, explore new possibilities, and confront the emerging issues and opportunity spaces solvable through aviation platforms,” said Steven Holz, assistant project manager for University Innovation with NASA’s Aeronautics Research Mission Directorate and Blue Skies judge and co-chair. “They bring imaginative ideas, interesting insights, and an impressive level of dedication. It’s always an honor to work with the next generation of innovators participating in our competition.”
      This competition challenges students to think creatively, explore new possibilities, and confront the emerging issues and opportunity spaces solvable through aviation platforms
      Steven holz
      Assistant Project Manager for University Innovation
      The winning team members were awarded an opportunity to intern during the 2025-26 academic year at any of four aeronautics-focused NASA centers — Langley Research Center in Hampton, Virginia, Glenn Research Center in Cleveland, Ames Research Center in California’s Silicon Valley, or Armstrong Flight Research Center in Edwards, California.  
      “It’s been super-rewarding for our team to see how far we’ve come, especially with all these other amazing projects that we were competing against,” said Nathan Kuehl, team lead at South Dakota State University. “It wouldn’t have been possible without our graduate advisor, Allea Klauenberg, and advisor, Todd Lechter. We want to thank everybody that made this experience possible.”
      Other awards included: 
      Second Place — University of Tulsa, CattleLog Cattle Management System Best Technical Paper — Boston University, PLAANT: Precision Land Analysis and Aerial Nitrogen Treatment Sponsored by NASA’s Aeronautics Research Mission Directorate, this year’s competition asked teams of university students to research new or improved aviation solutions to support agriculture that could be applied by 2035 or sooner. The goal of the competition, titled AgAir: Aviation Solutions for Agriculture, was to enhance production, efficiency, sustainability, and resilience to extreme weather. 
      At the forum, finalist teams presented concepts of aviation systems that could help the agriculture industry.Students had the opportunity to meet with NASA and industry experts, tour NASA Armstrong, and gain insight into the agency’s aviation mission.
      U.S. agriculture provides food, fuel, and fiber to the nation and the world. However, the industry faces significant challenges. NASA Aeronautics is committed to supporting commercial, industrial, and governmental partners in advancing aviation systems to modernize agricultural capabilities.  
      The Gateways to Blue Skies competition is sponsored by NASA’s Aeronautics Research Mission Directorate’s University Innovation Project and is managed by the National Institute of Aerospace.
      The National Institute of Aerospace has made available a livestream of the competition, as well as information about the finalists and their projects, and details about the 2025 competition.
      Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      5 min read NASA X-59’s Latest Testing Milestone: Simulating Flight from the Ground
      Article 6 days ago 4 min read Top Prize Awarded in Lunar Autonomy Challenge to Virtually Map Moon’s Surface
      Article 7 days ago 5 min read NASA Satellite Images Could Provide Early Volcano Warnings 
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Aeronautics
      Aeronautics STEM
      Transformative Aeronautics Concepts Program
      NASA History
      Share
      Details
      Last Updated May 22, 2025 EditorLillian GipsonContactRobert Margettarobert.j.margetta@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Glenn Research Center Langley Research Center Technology Transfer Transformative Aeronautics Concepts Program University Innovation View the full article
    • By NASA
      Technicians with ESA (European Space Agency) and Airbus installed the four solar array wings on NASA’s Orion spacecraft for Artemis II on March 3. The solar array wings, attached to the service module, deploy after Orion reaches space to power the spacecraft.
      Orion’s service module provides propulsion, thermal control, and electrical power, as well as air and water for the crew during their mission around the Moon.
      Each solar array wing has 15,000 solar cells to convert sunlight to electricity and is nearly 23 feet in length when fully deployed. In space, the arrays can turn on two axes to remain aligned with the Sun.
      Artemis II is the first crewed mission under NASA’s Artemis campaign. Through Artemis, the agency will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      Image credit: NASA/Kim Shiflett
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA marked a key milestone Feb. 18 with installation of RS-25 engine No. E20001, the first new production engine to help power the SLS (Space Launch System) rocket on future Artemis missions to the Moon.
      The engine, built by lead SLS engines contractor L3Harris (formerly Aerojet Rocketdyne), was installed on the Fred Haise Test Stand in preparation for acceptance testing next month. It represents the first of 24 new flight engines being built for missions, beginning with Artemis V.
      Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin The NASA Stennis test team will conduct a full-duration, 500-second hot fire, providing critical performance data to certify the engine for use on a future mission. During missions to the Moon, RS-25 engines fire for about 500 seconds and up to the 111% power level to help launch SLS, with the Orion spacecraft, into orbit.
      The engine arrived at the test stand from the L3Harris Engine Assembly Facility on the engine transport trailer before being lifted onto the vertical engine installer (VEI) on the west side deck. After rolling the engine into the stand, the team used the VEI to raise and secure it in place.
      The upcoming acceptance test follows two certification test series that helped verify the new engine production process and components meet all performance requirements. Four RS-25 engines help launch SLS, producing up to 2 million pounds of combined thrust.
      All RS-25 engines for Artemis missions are tested and proven flightworthy at NASA Stennis prior to use. RS-25 tests are conducted by a team of operators from NASA, L3Harris, and Syncom Space Services, prime contractor for site facilities and operations.
      Explore More NASA Stennis Images View the full article
    • By USH
      The ongoing mystery surrounding recent drone sightings has become increasingly complex, with conflicting reports making it difficult to draw definitive conclusions. However, a new and intriguing element has emerged alongside these drones sightings: numerous accounts of mysterious orbs, potentially of alien origin, flying at both low and high altitudes. 

      Reports of mysterious orbs have been increasing in recent weeks. These orbs have been sighted at both high altitudes and closer to urban areas. 
      Orb sighting over New Jersey on December 17, 2024Watch video UFO Sightings Daily
      Pilots have reported encounters to air traffic control. Listen to conversations between pilots and traffic control.
          
      And a passenger aboard United Airlines flight UA2359 from Chicago to Newark recently captured footage of these mysterious orbs. The video, shared online by the user “EasilyAmusedEE” on December 16, 2024, shows objects at altitudes between 40,000 and 50,000 feet—far beyond the capabilities of consumer drones. The footage was reportedly taken using an iPhone 16 Pro Max.
         Video plane passenger films unknown orbs.
      About the drone sightings: Meanwhile, eyewitness accounts describe these so-called drones as crafts that emit no noise, suggesting advanced technology. Additionally, there are claims that these crafts seem to intentionally draw attention, as they have reportedly interfered with cars (lamps flickering), electronics, streetlights (lamps flickering), and even fully charged batteries, which are said to be instantly drained in their presence.
         Video shows among other (drone/orb) sightings, cars lamps flickering, streetlights lamps flickering, fully charged batteries drained.
      This surge in Orb sightings raises more questions. Are these orbs extraterrestrial in origin? Could they be deliberately associated with the drone phenomena, or is their timing coincidental? Some suggest the possibility of a false flag operation, hinting at a deeper and potentially misleading agenda by the U.S. government. 
      Whether these drones and Orbs sightings point to advanced human technology, extraterrestrial activity, or a mix of both, one thing is clear: there is something significant going on.View the full article
    • By NASA
      This article is from the 2024 Technical Update.

      The NASA Engineering and Safety Center (NESC) has developed an analytical model that predicts diffusion between two gases during piston purging of liquid hydrogen (LH2) tanks. This model helps explain dramatic helium savings seen in a recent Kennedy Space Center (KSC) purge, shows that undesired turbulent mixing occurred in Space Shuttle External Tank purges, and is applicable to future helium purges of the Space Launch System Core Stage LH2 tanks.
      Background
      In 2023, work was completed on a new 1.3-million-gallon (174,000 standard cubic feet (scf)) liquid hydrogen tank at KSC in support of the Space Launch System[1], see Figure 1. Per contract, the vendor delivered this tank filled with gaseous nitrogen, leaving KSC ground operations the task of replacing the nitrogen with helium: a necessary step prior to introducing liquid hydrogen, which would freeze the nitrogen. Prior helium/nitrogen purges on the Apollo/Space Shuttle era 850,000-gallon (114000 scf) LH2 tanks were performed by pumping
      out the nitrogen, introducing helium, drawing samples, and then repeating if necessary. However, the new tank did not have a vacuum port, so instead, it was decided to introduce the helium from the top of the tank and push the nitrogen out of the bottom. Two million scf of helium was obtained and made ready for fear the two gases would mix, resulting in a long and expensive purge. Surprisingly, this top-down, or piston purge, resulted in a rapid replacement of the nitrogen with helium, using only 406,000 scf of helium, about 1.6 million scf less than planned (at $1/scf this is a $1.6 million dollar savings). To better understand this remarkable result, the NESC was asked to address the questions; why did this work so well and can it be improved further?
      Figure 1: The new 1.3-million-gallon LH2 tank Upon realizing that the purge was diffusion limited and could be modelled, variations were studied, leading to three important conclusions. The flow rate should be increased until the onset of turbulent mixing; once started, the purge should not be stopped because this allows additional diffusion to occur; and trying to improve the purge by varying temperature or pressure has little benefit. Purging of the huge LH2 spheres is rare, but purging of flight tanks is common. In 2008, purge data from three Space Shuttle External Tanks was measured using a mass spectrometer and the NESC was asked to apply the diffusion model to this data. Doing this showed
      evidence that turbulent mixing occurred indicating that the flow rates needed to be decreased. Having such a model has provided insight into the use of piston-type helium purges at KSC, with the goal of saving helium and manpower. This work is now directly applicable to purging the LH2 tank on the Space Launch System Core Stage.

      The Binary Gas Sensor
      During past purges, gas samples were taken to a lab to indicate the status of the purge but doing that for a piston purge would introduce time delays, allowing unwanted diffusion to take place. Fortuitously, an independent NESC assessment[4] was evaluating a binary gas sensor, with an excellent combination of cost, size, power, and weight to implement in the field, providing rapid real-time monitoring of the purge gas ratio. Using this sensor made the piston purging of the new LH2 tank successful.
      References
      Fesmire, J.; Swanger, A.; Jacobson, J; and Notardonato, W.: “Energy efficient
      large-scale storage of liquid hydrogen,” In IOP Conference Series: Materials
      Science and Engineering, vol. 1240, no. 1, p. 012088. IOP Publishing, 2022. Youngquist, R.; Arkin C.; Nurge, M.; Captain, J.; Johnson, R.; and Singh, U.:
      Helium Conservation by Diffusion Limited Purging of Liquid Hydrogen Tanks,
      NASA/TM-20240007062, June 2024. Singh, U.: Evaluation and Testing of Anaerobic Hydrogen Sensors for the
      Exploration Ground Systems Program, NASA/TM-20240012664, Sept. 2024. View the full article
  • Check out these Videos

×
×
  • Create New...