Jump to content

New Artemis Virtual Meeting Backgrounds Released Celebrating Artemis I, Looking to Artemis II and Beyond


Recommended Posts

  • Publishers
Posted

8 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Virtual meetings feeling a little stale? NASA has just unveiled a suite of new Artemis backgrounds to elevate your digital workspace.


From the majesty of the Artemis I launch lighting up the night sky to the iconic image of the Orion spacecraft with the Moon and Earth in view, these virtual backgrounds allow viewers to relive the awe-inspiring moments of Artemis I and glimpse the bright future that lies ahead as the Artemis campaign enables humans to live and work at the Moon’s South Pole region.


Scroll through to download your next virtual background for work, school, or just for fun, and learn about all things Artemis as the agency and its partners cross off milestones leading up to Artemis II and missions beyond.

Artemis I Launch

Framed by vegetation in the foreground and against the backdrop of a black night sky, NASA’s SLS (Space Launch System) rocket carrying the Orion spacecraft launches on the Artemis I flight test on Nov. 16, 2022, from Launch Complex 39B at NASA’s Kennedy Space Center in Florida.
Credit: NASA/Bill Ingalls

NASA’s SLS (Space Launch System) rocket carrying the Orion spacecraft launches on the Artemis I flight test on Nov. 16, 2022, from Launch Complex 39B at NASA’s Kennedy Space Center in Florida. NASA’s Artemis I mission was the first integrated flight test of the agency’s deep space exploration systems: the Orion spacecraft, SLS rocket, and ground systems. SLS and Orion launched at 1:47 a.m. EST from Launch Pad 39B at Kennedy.

Artemis II Crew

Underneath the wording “Artemis II” in white against a black backdrop, the Artemis II crew individual portraits are lined up in pairs from left to right across this virtual background. From left, all wearing bright orange launch-and-entry spacesuits, are Commander Reid Wiseman, Pilot Victor Glover, and Mission Specialist Christina Koch from NASA, and Mission Specialist Jeremy Hansen from the Canadian Space Agency.
Credit: NASA

Meet the astronauts who will fly around the Moon during the Artemis II mission. From left are Commander Reid Wiseman, Pilot Victor Glover, and Mission Specialist Christina Koch from NASA, and Mission Specialist Jeremy Hansen from the Canadian Space Agency.

Astronaut Regolith

An artist’s concept shows two Artemis crew members wearing white spacesuits with large, square life-support system backpacks and round helmets with gold visors on the pebbled gray surface of the Moon. In the foreground, an astronaut holds out a palm-sized lunar sample toward the viewer. A few feet behind the astronaut in the foreground, another crew member uses a camera to take a snapshot aimed at the rocky surface. The scene is backdropped by a black night sky.
Credit: NASA

An artist’s concept of two suited Artemis crew members working on the lunar surface. The samples collected during future Artemis missions will continue to advance our knowledge of the solar system and help us understand the history and formation of Earth and the Moon, uncovering some of the mysteries that have long eluded scientists.

Exploration Ground Systems

Framed by a blue sky and white clouds, NASA’s mobile launcher — a vertical, rectangular structure constructed of gray metal and open scaffolding — seemingly rises into the sky. At the top of the structure is an American flag waving in the wind. The mobile launcher sits atop Crawler Transporter-2 — a flat, square platform that carries heavy structures to the launch pad on tooth-metal wheels, or sprockets, which are commonly seen on tanks. Crawler Transporter-2 also has an American flag affixed to the front, which lies flat against the structure.
Credit: NASA

NASA’s mobile launcher, atop Crawler Transporter-2, is at the entrance to High Bay 3 at the Vehicle Assembly Building (VAB) on Sept. 8, 2018, at NASA’s Kennedy Space Center in Florida. This is the first time that the modified mobile launcher made the trip to the pad and the VAB. The mobile launcher is the structure that is used to assemble, process, and launch the SLS rocket.

Backdropped by a nearly cloudless blue sky, Crawler Transporter-2 — a flat, square platform that carries heavy structures to the launch pad on tooth-metal wheels, or sprockets, which are commonly seen on tanks — dominates the foreground of the image as it moves away from the launch pad. In the background near the right-hand side of the image, and in between two metal tower structures and one metal water tower, NASA’s SLS rocket with Orion spacecraft aboard is seen connected to and in front of the mobile launcher at Launch Pad 39B on Nov. 4, 2022. The orange core stage of the SLS rocket stands out from the white solid rocket boosters at each side and white Interim Cryogenic Propulsion Stage and white Orion capsule topping it.
Credit: NASA/Joel Kowsky

NASA’s SLS rocket with the Orion spacecraft aboard is seen atop a mobile launcher at Launch Pad 39B on Nov. 4, 2022, as Crawler Transporter-2 departs the pad following rollout at NASA’s Kennedy Space Center in Florida.

In this image, at the foreground and in front of the massive USS Portland aircraft carrier ship, is the dark gray Orion capsule bobbing in the ocean after returning from its flight test around the Moon. Directly above the capsule are five visible inflated orange balloons. A large Navy helicopter is seen in a cloud-filled sky as it approaches the spacecraft from overhead.
Credit: NASA

After Orion splashed down in the Pacific Ocean, west of Baja California, the spacecraft was recovered by personnel on the USS Portland from the U.S. Department of Defense, including Navy amphibious specialists, Space Force weather specialists, and Air Force specialists, as well as engineers and technicians from NASA’s Kennedy Space Center in Florida, the agency’s Johnson Space Center in Houston, and Lockheed Martin Space Operations. Personnel from NASA’s Exploration Ground Systems led the recovery efforts.

Backdropped against the pastel hues of a dawn sky, at left in the image is the Vehicle Assembly Building, a square, windowless building with gray accents and an enormous, painted American flag next to another painted NASA insignia, nicknamed the “meatball.” At right, the towering, interconnected structures of NASA’s crawler transporter, mobile launcher, and SLS rocket with Orion spacecraft atop roll out toward Launch Complex 39B for the first time on March 17, 2022, at NASA’s Kennedy Space Center in Florida. The scene is framed by shadowed vegetation and a large body of water in the foreground.
Credit: NASA/Keegan Barber

NASA’s SLS (Space Launch System) rocket with the Orion spacecraft aboard is seen atop a mobile launcher as it rolls out to Launch Complex 39B for the first time on March 17, 2022, at NASA’s Kennedy Space Center in Florida. At left is the Vehicle Assembly Building.

First Woman

virtual-backgrounds-review-110424-page-1
Credit: NASA

“First Woman” graphic novel virtual background featuring an illustration of the inside of a lunar space station outfitted with research racks and computer displays. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/

virtual-backgrounds-review-110424-page-1
Credit: NASA

“First Woman” graphic novel virtual background featuring the illustration of the inside of a lunar space station outfitted with research racks and computer displays, along with zero-g indicator suited rubber duckies floating throughout. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/

virtual-backgrounds-review-110424-page-1
Credit: NASA

This “First Woman” graphic novel virtual background features an illustrated scene from a lunar mission. At a lunar camp, one suited astronaut flashes the peace sign while RT, the robot sidekick, waves in the foreground. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/

Gateway

Above a small section of the Moon’s cratered and pock-marked upper sphere, the Gateway space station hosting the Orion spacecraft and SpaceX’s deep space logistics spacecraft is seen hovering at top right in the image while in a polar orbit around the Moon. Against the pitch-black backdrop, darkened solar arrays highlighted with a golden mesh pattern are oriented north and south at the front, or far left, of the space station. Gateway is a long white-and-gray tubular structure with an east-west orientation within the image, with the triangular-shaped Orion capsule docked to the far right of it — the spacecraft’s four white solar arrays evenly outstretched in the shape of an “x.”
Credit: NASA

The Gateway space station hosts the Orion spacecraft and SpaceX’s deep space logistics spacecraft in a polar orbit around the Moon, supporting scientific discovery on the lunar surface during the Artemis IV mission.

Dominating the frame of this background is the Gateway space station’s HALO (Habitation and Logistics Outpost) module, a giant silver-colored metal tunnel formed of segments welded together. A light source at the end of the tunnel shines toward the viewer, illuminating a grid-like pattern within the metallic sections. At each side, two large portholes open to the outside. HALO is seen here within a large building in Turin, Italy, where it was welded and tested.
Credit: Northrop Grumman and Thales Alenia Space

The Gateway space station’s HALO (Habitation and Logistics Outpost) module, one of two of Gateway’s habitation elements where astronauts will live, conduct science, and prepare for lunar surface missions, successfully completed welding in Turin, Italy. Following a series of tests to ensure its safety, the future home for astronauts will travel to Gilbert, Arizona, for final outfitting ahead of launch to lunar orbit. Gateway will be humanity’s first space station in lunar orbit and is an essential component of the Artemis campaign to return humans to the Moon for scientific discovery and chart a path for human missions to Mars.

Lunar Surface

In this artist’s concept, the SpaceX Starship human lander stands on the gray, undulating surface of the Moon against a jet-black backdrop. The lander is almost all white except for black accents near its “legs” and a thin black stripe near the top of the conical rocket. Above the thin black stripe is a miniature American flag and NASA worm insignia. Near the top of the lander is a row of 10 illuminated windows in a softened rectangular shape. A black “x” SpaceX insignia marks the bottom of the lander.
Credit: SpaceX

Artist’s concept of SpaceX Starship Human Landing System, or HLS, which is slated to transport astronauts to and from the lunar surface during Artemis III and IV.

In this artist’s concept, two crew members in white spacesuits — one kneeling, another standing — work on the gray lunar surface of the Moon to the right of Blue Origin’s Blue Moon MK-2 lander. Comprised of three connected elements in a shape reminiscent of a wide rocket ship, the lander concept is white, with a NASA meatball logo near the top and an American flag near the bottom portion. Metallic gold legs buttress out from the bottom of the lander to give it stability on the uneven regolith. In the distance is slightly undulating lunar terrain and Earth, partially hidden in shadow, rising above the lunar horizon.
Credit: Blue Origin

Artist’s concept of Blue Origin’s Blue Moon MK-2 human lunar lander, which is slated to land astronauts on the Moon during Artemis V.

Driving into the frame at the left of the virtual background, this concept image shows the “Moon buggy” for NASA’s Artemis missions — the Lunar Terrain Vehicle (LTV) — occupied by two astronauts in white spacesuits and helmets with gold visors. This LTV concept has a silver-colored open metal frame, reminiscent of off-roading sport vehicles, along with deeply grooved tires for traction on the uneven lunar terrain. A NASA insignia decal is on the LTV frame above the left front tire, along with an American flag decal on the frame above the right front tire. In the background, the undulating lunar terrain framed by the pitch-black backdrop of space.
Credit: NASA

The “Moon buggy” for NASA’s Artemis missions, the Lunar Terrain Vehicle (LTV), is seen here enabling a pair of astronauts to explore more of the Moon’s surface and conduct science research farther away from the landing site. NASA has selected Intuitive Machines, Lunar Outpost, and Venturi Astrolab to advance capabilities for an LTV.

virtual-backgrounds-review-110424-page-2
Credit: JAXA/Toyota

An artist’s concept of the pressurized rover — which is being designed, developed, and operated by JAXA (Japan Aerospace Exploration Agency) — is seen driving across the lunar terrain. The pressurized rover will serve as a mobile habitat and laboratory for the astronauts to live and work for extended periods of time on the Moon.

Logo

meatball-color.png?w=2048
Credit: NASA

The NASA “meatball” logo. The round red, white, and blue insignia was designed by employee James Modarelli in 1959, NASA’s second year. The design incorporates references to different aspects of NASA’s missions.

logos.png?w=2048
Credit: NASA

The NASA meatball logo (left) and Artemis logo side by side.

Moon Phases

virtual-backgrounds-review-110424-page-2
Credit: NASA

The different phases of the Moon, shown in variations of shadowing, extend across this virtual background.

Orion

orion-c.png?w=2048
Credit: NASA

On flight day 5 during Artemis I, the Orion spacecraft took a selfie while approaching the Moon ahead of the outbound powered flyby — a burn of Orion’s main engine that placed the spacecraft into lunar orbit. During this maneuver, Orion came within 81 miles of the lunar surface.

orion-b.png?w=2048
Credit: NASA

On flight day 13 during Artemis I, Orion reached its maximum distance from Earth at 268,563 miles away from our home planet, traveling farther than any other spacecraft built for humans.

In this first high-resolution image, taken on the first day of the Artemis I mission, the Orion spacecraft’s service module is seen at left, seemingly framing a slightly blurred Earth to its right with one dark, rectangular solar array. Intricate reddish wires cover the solar array like fine threads. The spacecraft, gleaming white, is slightly shadowed against the black expanse of space.
Credit: NASA

This first high-resolution image, taken on the first day of the Artemis I mission, was captured by a camera on the tip of one of Orion’s solar arrays. The spacecraft was 57,000 miles from home and distancing itself from planet Earth as it approached the Moon and distant retrograde orbit.

Silhouettes

In this virtual background, various scenes from Earth, Moon, and Mars are depicted within the silhouette outlines of three suited astronauts, artistically representing the interconnected nature of human space exploration from low Earth orbit to the Moon and, one day, human missions to Mars.
Credit: NASA

In this virtual background, various scenes from Earth, Moon, and Mars are depicted within the silhouette outlines of three suited astronauts, artistically representing the interconnected nature of human space exploration from low Earth orbit to the Moon and, one day, human missions to Mars.

SLS (Space Launch System)

virtual-backgrounds-review-110424-page-3
Credit: Joel Kowsky

In this sunrise photo at NASA’s Kennedy Space Center in Florida, NASA’s SLS rocket with the Orion spacecraft aboard is seen atop the mobile launcher at Launch Pad 39B as preparations continued for the Artemis I launch.

virtual-backgrounds-review-110424-page-3
Credit: NASA/Joel Kowsky

In this close-up image, NASA’s SLS rocket with the Orion spacecraft aboard is seen atop the mobile launcher at Launch Pad 39B on Nov. 12, 2022, at NASA’s Kennedy Space Center in Florida.

virtual-backgrounds-review-110424-page-3
Credit: NASA/Joel Kowsky

NASA’s SLS rocket with the Orion spacecraft aboard is seen at sunrise atop the mobile launcher at Launch Pad 39B on Nov. 7, 2022, at NASA’s Kennedy Space Center in Florida.

Earth, Moon, and Mars

From left, an artist’s concept of the Moon, Earth, and Mars sharing the jet-black backdrop of space. At far left, a tiny Moon shrouded in shadow, the bottom half gleaming gray and bright white. Below the Moon and slightly off to the right, the bottom half of Earth is visible, showing cloud tops and an oceanic view, with the top covered in shadow. At the very far right of the virtual background, toward the upper quadrant, a partially shrouded Mars is visible. Mars is bigger than the Moon but smaller than Earth in this virtual background, its surface gleaming a rust-colored orange.
Credit: NASA

From left, an artist’s concept of the Moon, Earth, and Mars sharing space. NASA’s long-term goal is to send humans to Mars, and we will use what we learn at the Moon to help us get there. This is the agency’s Moon to Mars exploration approach.  

In this artist’s concept, the upper portion of a blended sphere represents the Earth, Moon, and Mars. The left third of the celestial body is oceanic blue, representing Earth’s oceans. The Earth piece blends into the center portion, which is shown as variations of gray with craters and other surface features reminiscent of the Moon. The Moon piece blends into the right third, which is colored in orange and indicative of Mars.
Credit: NASA

In this artist’s concept, the upper portion of a blended sphere represents the Earth, Moon, and Mars.

An artist’s concept showing, from left, the Earth, Moon, and Mars in sequence. At the left quadrant of the pitch-black background, nearly half of the Earth is shown close up, showing details like deep blue oceans and white clouds on the far-right portion. A shadow covers Earth on the left side. Slightly further in the distance and smaller in size is the Moon in a waxing crescent phase, with most of the Moon in shadow except a bright sliver visible at the right side. Further in distance and smaller in size from the Moon, Mars is also shown in mostly covered in shadow, with only a sliver of the pale orange planet visible at the right side.
Credit: NASA

An artist’s concept showing, from left, the Earth, Moon, and Mars in sequence. Mars remains our horizon goal for human exploration because it is a rich destination for scientific discovery and a driver of technologies that will enable humans to travel and explore far from Earth. 

About the Author

Catherine E. Williams

Catherine E. Williams

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Heading into a recent staff meeting for Johnson Space Center’s Business Development & Technology Integration Office, Jason Foster anticipated a typical agenda of team updates and discussion. He did not expect an announcement that he had been named a 2025 Rookie of the Year – Honorable Mention through the Federal Laboratory Consortium’s annual awards program.

      Foster was one of only three technology transfer professionals across the federal government to be recognized in the Rookie of the Year category, which is open to early-career individuals with less than three years of experience. “It was definitely a surprise,” he said. “It was quite an honor, because it’s not only representing Johnson Space Center but also NASA.”

      Jason Foster recognized at the Federal Laboratory Consortium Award Ceremony as a Rookie of the Year – Honorable Mention.Image courtesy of Jason Foster Foster is a licensing specialist and New Technology Report (NTR) specialist within Johnson’s Technology Transfer Office in Houston. That team works to ensure that innovations developed for aeronautics and space exploration are made broadly available to the public, maximizing their benefit to the nation. Foster’s role involves both capturing new technologies developed at Johnson and marketing and licensing those technologies to companies that would like to use and further develop them.

      He describes much of his work as “technology hunting” – reaching out to branches, offices, and teams across Johnson to teach them about the Technology Transfer Office, NTRs, and the value of technology reporting for NASA and the public. “NTRs are the foundation that allows our office to do our job,” he said. “We need to know about a technology in order to transfer it.”

      Jason Foster (left) visited NASA’s White Sands Test Facility in Las Cruces, New Mexico, with his colleague Edgar Castillo as part of the Technology Transfer Office’s work to capture new technology and innovations developed at Johnson and affiliated facilities. Image courtesy of Jason Foster Foster’s efforts to streamline and strengthen the reporting and patenting of Johnson’s innovations led to his recognition by the consortium. His proactive outreach and relationship-building improved customer service and contributed to 158 NTRs in fiscal year 2024 – the highest number of NTRs disclosed by federal employees at any NASA center. Foster also proposed a three-month NTR sprint, during which he led a team of seven in an intensive exercise to identify and report new technologies. This initiative not only cleared a backlog of leads for the office, but also resulted in more than 120 previously undisclosed NTRs. “We are still using that process now as we continue processing NTRs,” Foster said. On top of those achievements, he helped secure the highest recorded number of license agreements with commercial entities in the center’s history, with 41 licenses executed in fiscal year 2024.

      “I am very proud of my accomplishments, none of it would be possible without the open-mindedness and continuous support of my incredible team,” Foster said. “They have always provided a space to grow, and actively welcome innovation in our processes and workflows.”

      Jason Foster educated Johnson employees about the Technology Transfer Office and the importance of submitting New Technology Reports during the center’s annual Innovation Showcase.Image courtesy of Jason Foster A self-described “space nerd,” Foster said he always envisioned working at NASA, but not until much later in his career – ideally as an astronaut. He initially planned to pursue an astrophysics degree but discovered a passion for engineering and fused that with his love of space by studying aerospace, aeronautical, and astronautical engineering instead. In his last semester of college at California Polytechnic State University of San Luis Obispo, he landed a Universities Space Research Association internship at Johnson, supporting flight software development for crew exercise systems on the International Space Station and future exploration missions. “I got really involved in the Johnson Space Center team and the work, and I thought, what if I joined NASA now?”

      He was hired as a licensing specialist on the Technology Transfer team under the JETS II Contract as an Amentum employee shortly after graduating and continually seeks new opportunities to expand his role and skillsets. “The more I can learn about anything NASA’s doing is incredible,” he said. “I found myself in this perfect position where literally my job is to learn everything there is to learn.”

      Jason Foster holding up Aerogel during his visit to the Hypervelocity Impact Testing Laboratory at NASA’s White Sands Test Facility in Las Cruces, New Mexico. The visit was part of the Technology Transfer Office’s work to capture new technology and innovations developed at Johnson and affiliated facilities. Image courtesy of Jason Foster Foster celebrates three years with NASA this July. In his time at the agency, he has learned the value of getting to know and understand your colleagues’ needs in order to help them. Before he meets with someone, he takes time to learn about the organization or team they are a part of, the work they are involved in, and what they might discuss. It is also important to determine how each person prefers to communicate and collaborate. “Doing your homework pays dividends,” Foster said. He has found that being as prepared as possible opens doors to more opportunities, and it helps to save valuable time for busy team members.

      Jason Foster practices fire spinning on a California beach. Image courtesy of Jason Foster When he is not technology hunting, you might find Foster practicing the art of fire spinning. He picked up the hobby in college, joining a club that met at local beaches to practice spinning and capturing different geometric patterns through long exposure photos. “It was kind of a strange thing to get into, but it was really fun,” he said. His love of learning drives his interest in other activities as well. Gardening is a relatively new hobby inspired by a realization that he had never grown anything before.   

      “It’s a genuine joy, I think, coming across something with curiosity and wanting to learn from it,” he said. “I think it especially helps in my job, where your curiosity switch has to be on at least 90% of the time.”

      Explore More
      4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts 
      Article 6 days ago 4 min read Johnson’s Paige Whittington Builds a Symphony of Simulations
      Article 3 weeks ago 9 min read Station Nation: Meet Megan Harvey, Utilization Flight Lead and Capsule Communicator 
      Article 4 weeks ago View the full article
    • By NASA
      Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025. NASA/Isaac Watson NASA and the Department of Defense (DoD) teamed up June 11 and 12 to simulate emergency procedures they would use to rescue the Artemis II crew in the event of a launch emergency. The simulations, which took place off the coast of Florida and were supported by launch and flight control teams, are preparing NASA to send four astronauts around the Moon and back next year as part of the agency’s first crewed Artemis mission.
      The team rehearsed procedures they would use to rescue the crew during an abort of NASA’s Orion spacecraft while the SLS (Space Launch System) rocket is still on the launch pad, as well as during ascent to space. A set of test mannequins and a representative version of Orion called the Crew Module Test Article, were used during the tests.
      The launch team at NASA’s Kennedy Space Center in Florida, flight controllers in mission control at the agency’s Johnson Space Center in Houston, as well as the mission management team, all worked together, exercising their integrated procedures for these emergency scenarios.
      Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025.NASA/Isaac Watson “Part of preparing to send humans to the Moon is ensuring our teams are ready for any scenario on launch day,” said Lakiesha Hawkins, NASA’s assistant deputy associate administrator for the Moon to Mars Program, and who also is chair of the mission management team for Artemis II. “We’re getting closer to our bold mission to send four astronauts around the Moon, and our integrated testing helps ensure we’re ready to bring them home in any scenario.”
      The launch pad abort scenario was up first. The teams conducted a normal launch countdown before declaring an abort before the rocket was scheduled to launch. During a real pad emergency, Orion’s launch abort system would propel Orion and its crew a safe distance away and orient it for splashdown before the capsule’s parachutes would then deploy ahead of a safe splashdown off the coast of Florida.
      Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025. NASA/Isaac Watson For the simulated splashdown, the test Orion with mannequins aboard was placed in the water five miles east of Kennedy. Once the launch team made the simulated pad abort call, two Navy helicopters carrying U.S. Air Force pararescuers departed nearby Patrick Space Force Base. The rescuers jumped into the water with unique DoD and NASA rescue equipment to safely approach the spacecraft, retrieve the mannequin crew, and transport them for medical care in the helicopters, just as they would do in the event of an actual pad abort during the Artemis II mission.
      The next day focused on an abort scenario during ascent to space.
      The Artemis recovery team set up another simulation at sea 12 miles east of Kennedy, using the Orion crew module test article and mannequins. With launch and flight control teams supporting, as was the Artemis II crew inside a simulator at Johnson, the rescue team sprung into action after receiving the simulated ascent abort call and began rescue procedures using a C-17 aircraft and U.S. Air Force pararescuers. Upon reaching the capsule, the rescuers jumped from the C-17 with DoD and NASA unique rescue gear. In an actual ascent abort, Orion would separate from the rocket in milliseconds to safely get away prior to deploying parachutes and splashing down.
      Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for an ascent abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Thursday, June 12, 2025. NASA/Isaac Watson Rescue procedures are similar to those used in the Underway Recovery Test conducted off the California coast in March. This demonstration ended with opening the hatch and extracting the mannequins from the capsule, so teams stopped without completing the helicopter transportation that would be used during a real rescue.
      Exercising procedures for extreme scenarios is part of NASA’s work to execute its mission and keep the crew safe. Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all. 
      View the full article
    • By NASA
      3 Min Read I Am Artemis: Ernesto Garcia
      Ernesto Garcia, engineering manager at Rayotech Scientific, Inc., holds a test article of one of the windowpanes for the Orion spacecraft. Credits: NASA/Rad Sinyak Listen to this audio excerpt from Ernesto Garcia, Rayotech Scientific engineering manager:
      0:00 / 0:00
      Your browser does not support the audio element.
      My name is Ernesto Garcia, and I am an engineering manager at Rayotech Scientific in San Diego, in charge of fabricating the windowpanes for the Orion spacecraft.

      Fabricating Orion’s windowpanes entails a very strict manufacturing process. It involves first starting from a giant sheet of glass that we cut down to near net shape. Once we get down to that near net shape, we perform a grinding operation. We grind the window edges and grind the faces.

      The windows are visible on the Orion spacecraft crew module for Artemis I, shown here on May 2, 2019, undergoing direct field acoustic testing at NASA’s Kennedy Space Center in Florida.NASA/Rad Sinyak Once we do all that grinding, we perform a specialized process where we actually strengthen the edges of the window. Since most of the window’s strength comes from the edges, we want to make sure that those are perfect and pristine, and so we minimize any subsurface damage that is around that. Then we send it off to get polished and coated.

      After that, we perform pressure testing in our lab, which is really the most important thing that is required for this window to prove that it can survive in space. We apply the required stresses to make sure that the windows can survive on the Orion spacecraft.

      The opportunity to be part of this program has been something that I’m really proud of.


      When I was a child, I always wanted to work for NASA — and now, I work directly with NASA engineers, work with the windows first-hand, and work to develop processes.
      Ernesto Garcia
      Engineering Manager, Rayotech Scientific
      Coming up with ideas of how to manufacture [the windows] and then coming up with the pressure testing equipment to verify that they are going to survive in space was extremely fulfilling.

      Being able to participate in Artemis I and seeing those windows on that [Orion spacecraft] — seeing it go into space — was probably one of the most rewarding things I’ve ever experienced besides having my kids. My children are immensely proud of what I’m doing. Seeing my kids’ reactions when I’m letting them know that I’m working directly with people that are putting things in space, with people that are making changes in the world — it’s something that inspires them.

      NASA astronauts and Artemis II crew members Reid Wiseman and Victor Glover look through a window of Orion spacecraft mockup during Post Insertion and Deorbit Preparation training at the Space Vehicle Mockup Facility in Houston, Texas. The crew practiced getting the Orion spacecraft configured once in orbit, how to make it habitable, and suited up in their entry pressure suits to prepare for their return from the Moon.Mark Sowa – NASA – JSC I imagine it will be a very special experience for the Artemis II astronauts to look out of these windows on their mission around the Moon. For them to be able to just look out and see what’s around them…to explore what else is out there from their eyes, not a camera’s point of view. It’s going to be pretty extraordinary that they’ll be able to see from their eyes — through our windows — something that not everybody else gets to see.



      About the Author
      Erika Peters

      Share
      Details
      Last Updated Jun 10, 2025 Related Terms
      Orion Program I Am Artemis Orion Multi-Purpose Crew Vehicle Explore More
      4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts 
      Article 8 hours ago 3 min read I Am Artemis: Lili Villarreal
      Lili Villarreal fell in love with space exploration from an early age when her and…
      Article 6 days ago 4 min read Integrated Testing on Horizon for Artemis II Launch Preparations
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      The European Space Agency’s (ESA) newest planetary defender has opened its ‘eye’ to the cosmos for the first time. The Flyeye telescope’s ‘first light’ marks the beginning of a new chapter in how we scan the skies for new near-Earth asteroids and comets.
      View the full article
    • By NASA
      3 Min Read I Am Artemis: Lili Villarreal
      Listen to this audio excerpt from Liliana Villarreal, Artemis Landing & Recovery Director:
      0:00 / 0:00
      Your browser does not support the audio element. Lili Villarreal fell in love with space exploration from an early age when she and her family visited the Kennedy Space Center Visitor Complex in Florida. So, it should come as no surprise that when the opportunity came for her to start working on NASA’s Artemis missions to explore the Moon and build the foundation for the first crewed mission to Mars, she jumped at it.  
      I was like, ‘Wow, we're going back to the Moon. I mean, how cool would it be to be at the beginning stages of that?'
      Liliana Villareal
      Artemis Landing & Recovery Director
      She currently serves as the Artemis Landing and Recovery Director, helping retrieve the astronauts and Orion spacecraft after they splash down in the Pacific Ocean following their mission in space.
      Originally from Cartagena, Colombia, Villarreal moved to Miami, Florida, when she was 10 years old with the goal of one day entering the aerospace industry. In 2007, her dream came true, and she became a part of the NASA team.
      Prior to becoming the landing and recovery director, Villarreal served as the deputy flow director for the Artemis I mission, responsible for the integration, stacking, and testing of the SLS (Space Launch System) rocket and Orion spacecraft inside the Vehicle Assembly Building at the agency’s Kennedy Space Center.
      Cliff Lanham, fourth from left, ground operations manager with Exploration Ground Systems (EGS), passes the baton to Charlie Blackwell-Thompson, Artemis I launch director, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on March 16, 2022. Joining them from left, are Stacey Bagg, Matt Czech, and Liliana Villareal, with EGS. Next to Blackwell-Thomson are Jeremy Graeber, deputy launch director, and Teresa Annulis.
      NASA/Glenn Benson “I kind of came in about a couple of years before we started processing Artemis I,” Villarreal said. “It took a while to get to the good parts of operations where it’s like, ‘Oh my god, we have everything here, and we’re starting to put everything together. And every day is a different day. Every day we have to figure out, ‘OK, what happened? How are we going to solve it?’ That’s the fun part about being an engineer out here.”
      Throughout her NASA career, she’s also had the opportunity to work in the operations division for the International Space Station Program.
      Every day I work on the Artemis missions, I imagine how the people who worked on Apollo felt because we are where they were back then.
      Liliana Villareal
      Artemis Landing & Recovery Director
      Currently, she and the team are training for Artemis II – the first crewed mission under Artemis to send four astronauts around the Moon and back. Part of the training includes rehearsing the steps and procedures to make sure they’re ready for crewed flights. This includes conducting underway recovery tests where NASA and U.S. Navy teams practice retrieving astronauts from a representative version of Orion at sea and bringing them and the spacecraft back to the ship.
      “I think it’s an amazing thing what we’re doing for humanity,” Villarreal said. “It’s going to better humanity, and it’s a steppingstone to eventually us living in other worlds. And I get to be part of that. You get to be part of that. How cool is that?”
      About the Author
      Antonia Jaramillo

      Share
      Details
      Last Updated Jun 04, 2025 Related Terms
      Kennedy Space Center Artemis Exploration Ground Systems I Am Artemis Orion Multi-Purpose Crew Vehicle Explore More
      4 min read Future Engineers Shine at NASA’s 2025 Lunabotics Robotics Competition
      Article 19 hours ago 4 min read Integrated Testing on Horizon for Artemis II Launch Preparations
      Article 6 days ago 4 min read Top Prize Awarded in Lunar Autonomy Challenge to Virtually Map Moon’s Surface
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...