Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      The beginning of the industrial development of LISA was among the highlights for the European Space Agency on the second day of the International Paris Air Show. 
      View the full article
    • By NASA
      A NASA-sponsored team is creating a new approach to measure magnetic fields by developing a new system that can both take scientific measurements and provide spacecraft attitude control functions. This new system is small, lightweight, and can be accommodated onboard the spacecraft, eliminating the need for the boom structure that is typically required to measure Earth’s magnetic field, thus allowing smaller, lower-cost spacecraft to take these measurements. In fact, this new system could not only enable small spacecraft to measure the magnetic field, it could replace the standard attitude control systems in future spacecraft that orbit Earth, allowing them to provide the important global measurements that enable us to understand how Earth’s magnetic field protects us from dangerous solar particles.

      Photo of the aurora (taken in Alaska) showing small scale features that are often present. Credit: NASA/Sebastian Saarloos
      Solar storms drive space weather that threatens our many assets in space and can also disrupt Earth’s upper atmosphere impacting our communications and power grids. Thankfully, the Earth’s magnetic field protects us and funnels much of that energy into the north and south poles creating aurorae. The aurorae are a beautiful display of the electromagnetic energy and currents that flow throughout the Earth’s space environment. They often have small-scale magnetic features that affect the total energy flowing through the system. Observing these small features requires multiple simultaneous observations over a broad range of spatial and temporal scales, which can be accomplished by constellations of small spacecraft.
      To enable such constellations, NASA is developing an innovative hybrid magnetometer that makes both direct current (DC) and alternating current (AC) magnetic measurements and is embedded in the spacecraft’s attitude determination and control system (ADCS)—the system that enables the satellite to know and control where it is pointing. High-performance, low SWAP+C (low-size, weight and power + cost) instruments are required, as is the ability to manufacture and test large numbers of these instruments within a typical flight build schedule. Future commercial or scientific satellites could use these small, lightweight embedded hybrid magnetometers to take the types of measurements that will expand our understanding of space weather and how Earth’s magnetic field responds to solar storms
      It is typically not possible to take research-quality DC and AC magnetic measurements using sensors within an ADCS since the ADCS is inside the spacecraft and near contaminating sources of magnetic noise such as magnetic torque rods—the electromagnets that generate a magnetic field and push against the Earth’s magnetic field to control the orientation of a spacecraft. Previous missions that have flown both DC and AC magnetometers placed them on long booms pointing in opposite directions from the satellite to keep the sensors as far from the spacecraft and each other as possible. In addition, the typical magnetometer used by an ADCS to measure the orientation of the spacecraft with respect to the geomagnetic field does not sample fast enough to measure the high-frequency signals needed to make magnetic field observations.
      A NASA-sponsored team at the University of Michigan is developing a new hybrid magnetometer and attitude determination and control system (HyMag-ADCS) that is a low-SWAP single package that can be integrated into a spacecraft without booms. HyMag-ADCS consists of a three-axis search coil AC magnetometer and a three-axis Quad-Mag DC magnetometer. The Quad-Mag DC magnetometer uses machine learning to enable boomless DC magnetometery, and the hybrid search-coil AC magnetometer includes attitude determination torque rods to enable the single 1U volume (103 cm) system to perform ADCS functions as well as collect science measurements.
      The magnetic torque rod and search coil sensor (left) and the Quad-Mag magnetometer prototype (right). Credit: Mark Moldwin The HyMag-ADCS team is incorporating the following technologies into the system to ensure success.
      Quad-Mag Hardware: The Quad-Mag DC magnetometer consists of four magneto-inductive magnetometers and a space-qualified micro-controller mounted on a single CubeSat form factor (10 x 10 cm) printed circuit board. These two types of devices are commercially available. Combining multiple sensors on a single board increases the instrument’s sensitivity by a factor of two compared to using a single sensor. In addition, the distributed sensors enable noise identification on small satellites, providing the science-grade magnetometer sensing that is key for both magnetic field measurements and attitude determination. The same type of magnetometer is part of the NASA Artemis Lunar Gateway Heliophysics Environmental and Radiation Measurement Experiment Suite (HERMES) Noisy Environment Magnetometer in a Small Integrated System (NEMISIS) magnetometer scheduled for launch in early 2027.
      Dual-use Electromagnetic Rods: The HyMag-ADCS team is using search coil electronics and torque rod electronics that were developed for other efforts in a new way. Use of these two electronics systems enables the electromagnetic rods in the HyMag-ADCS system to be used in two different ways—as torque rods for attitude determination and as search coils to make scientific measurements. The search coil electronics were designed for ground-based measurements to observe ultra-low frequency signals up to a few kHz that are generated by magnetic beacons for indoor localization. The torque rod electronics were designed for use on CubeSats and have flown on several University of Michigan CubeSats (e.g., CubeSat-investigating Atmospheric Density Response to Extreme driving [CADRE]). The HyMag-ADCS concept is to use the torque rod electronics as needed for attitude control and use the search coil electronics the rest of the time to make scientific AC magnetic field measurements.
      Machine Learning Algorithms for Spacecraft Noise Identification: Applying machine learning to these distributed sensors will autonomously remove noise generated by the spacecraft. The team is developing a powerful Unsupervised Blind Source Separation (UBSS) algorithm and a new method called Wavelet Adaptive Interference Cancellation for Underdetermined Platforms (WAIC-UP) to perform this task, and this method has already been demonstrated in simulation and the lab.
      The HyMag-ADCS system is early in its development stage, and a complete engineering design unit is under development. The project is being completed primarily with undergraduate and graduate students, providing hands-on experiential training for upcoming scientists and engineers.
      Early career electrical engineer Julio Vata and PhD student Jhanene Heying-Melendrez with art student resident Ana Trujillo Garcia in the magnetometer lab testing prototypes. Credit: Mark Moldwin For additional details, see the entry for this project on NASA TechPort .
      Project Lead: Prof. Mark Moldwin, University of Michigan
      Sponsoring Organization: NASA Heliophysics Division’s Heliophysics Technology and Instrument Development for Science (H-TIDeS) program.
      Share








      Details
      Last Updated Jun 17, 2025 Related Terms
      Technology Highlights Heliophysics Science Mission Directorate Science-enabling Technology Explore More
      2 min read Hubble Studies a Spiral’s Supernova Scene


      Article


      4 days ago
      5 min read NASA Launching Rockets Into Radio-Disrupting Clouds


      Article


      5 days ago
      2 min read Hubble Captures Starry Spectacle


      Article


      2 weeks ago
      View the full article
    • By European Space Agency
      The European Space Agency has begun the 55th International Paris Air Show by unveiling the first images from the Proba-3 spacecraft. 
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4554–4555: Let’s Try That One Again…
      NASA’s Mars rover Curiosity acquired this image using its Front Hazard Avoidance Camera (Front Hazcam) on May 28, 2025 — Sol 4553, or Martian day 4,553 of the Mars Science Laboratory mission — at 04:48:55 UTC. NASA/JPL-Caltech Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Earth planning date: Wednesday, May 28, 2025
      We came in early this morning and learned that part of Tuesday’s plan didn’t execute on Mars due to a temporary issue with the arm. We collected APXS data on the target “Palo Verde Mountains,” but were not able to take the corresponding MAHLI images or drive away. So it was a straightforward decision for the planning team today to pick up where we left off yesterday, giving ourselves a second chance to collect the MAHLI observation and then complete the same 29.5-meter drive to the west (about 97 feet) that we had planned on Tuesday.
       We love making lemonade from lemons when things don’t go exactly as expected in rover tactical planning, and today was no exception. Since we’re sticking around for a little bit longer, the science team decided to collect additional mosaics of impressive nearby features, including a 15×2 Mastcam mosaic of the “Mishe Mokwa” hill and an 11×2 Mastcam mosaic of fractures near “Lake Cachuma.” We’re also having another go at taking the epically long, long-distance RMI mosaic of a crater 91 kilometers away from Curiosity (almost 57 miles) that we planned yesterday, and we’re playing around with the focus settings to see if we can get a sharper image. 
      The team also had time for a second RMI mosaic of our very well-imaged “Texoli” butte, and a ChemCam LIBS observation on a target named “Santa Monica Bay,” which is just above the “Sisquoc River” target we observed yesterday on the bumpy rock in our workspace. As usual, we will also continue to monitor the environment around us with REMS, RAD, Navcam, and Mastcam observations.
      Share








      Details
      Last Updated May 30, 2025 Related Terms
      Blogs Explore More
      2 min read Sol 4553: Back to the Boxwork!


      Article


      13 hours ago
      3 min read A Dust Devil Photobombs Perseverance!


      Article


      14 hours ago
      4 min read Sols 4549-4552: Keeping Busy Over the Long Weekend


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s coverage of the April 8, 2024, total solar eclipse has earned two nominations for the 46th Annual News & Documentary Emmy Awards.
      The Academy of Television Arts & Sciences announced the nominations on May 1, recognizing NASA’s outstanding work in sharing this rare celestial event with audiences around the world. The winners are set to be unveiled at a ceremony in late June.
      “Total solar eclipses demonstrate the special connection between our Earth, Moon, and Sun by impacting our senses during the breathtaking moments of total alignment that only occur at this time on Earth,” said Nicky Fox, associate administrator for science at NASA Headquarters in Washington. “NASA’s Eclipse coverage team perfectly encapsulated the awe-inspiring experience from start to finish for viewers around the world in this once-in-a-lifetime moment in American history. Congratulations to the entire NASA Eclipse coverage team for their two much-deserved Emmy award nominations!”
      The two nominations include:
      Outstanding Live News Special for the agency’s live broadcast coverage of the 2024 total solar eclipse. NASA’s live broadcast coverage of the 2024 total solar eclipse was the most ambitious live project ever attempted by the agency. The broadcast spanned three hours as the eclipse traveled 3,000 miles across seven states and two countries. From cities, parks, and stadiums, 11 hosts and correspondents provided on air commentary, interviews, and live coverage. Viewers tuned in from all over the world, including at watch parties in 9 locations, from the Austin Public Library to New York’s Times Square. An interactive “Eclipse Board” provided real time data analysis as the Moon’s shadow crossed North America. Live feeds from astronauts aboard the International Space Station and NASA’s WB-57 high-altitude research aircraft were brought in to provide rare and unique perspectives of the solar event.
      In total, NASA received almost 40 million views across its own distribution. Externally, the main broadcast was picked up in 2,208 hits on 568 channels in 25 countries.
      Outstanding Show Open or Title Sequence – News for the agency’s show open for the 2024 total solar eclipse. NASA’s show open for the 2024 total solar eclipse live broadcast explores the powerful connections between the Sun, humanity, and the rare moment when day turns to night. From witnessing the Sun’s atmosphere to feeling the dramatic drop in temperature, the video captures the psychological, emotional, and cultural impact of this celestial phenomenon.  
      For more information about NASA missions, visit:
      https://www.nasa.gov
      Share
      Details
      Last Updated May 08, 2025 Related Terms
      General 2024 Solar Eclipse Eclipses Heliophysics Heliophysics Division Science Mission Directorate Solar Eclipses The Solar System Explore More
      7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole
      Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space…
      Article 3 hours ago 2 min read NASA Expands Youth Engagement With New Scouting America Agreement
      Article 1 day ago 5 min read NASA Progresses Toward Crewed Moon Mission with Spacecraft, Rocket Milestones
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...