Jump to content

Alfonso Delgado Bonal Has His Head in the Clouds — for Research


Recommended Posts

  • Publishers
Posted

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Research scientist Alfonso Delgado Bonal makes important discoveries about patterns in cloud movements while thriving within the NASA Goddard family.

Name: Alfonso Delgado Bonal
Formal Job Classification: Research scientist
Organization: Climate and Radiation Laboratory, Science Directorate (Code 613)

Alfonso stands in front of a large globe of Earth. He has dark hair and a beard and mustache, with a thoughtful expression. He is wearing a navy blue polo with the blue, red, and white NASA “meatball” logo on the chest patch.
Alfonso Delgado Bonal is a research scientist for NASA’s Goddard Space Flight Center’s Climate and Radiation Laboratory in Greenbelt, Md.
NASA

What do you do and what is most interesting about your role here at Goddard?

As a theoretical physicist, I study data from the DSCOVR satellite to analyze daytime variability of cloud properties. We are discovering diurnal (daylight) cloud patterns using a single sensor.

What is your educational background?

I have an undergraduate degree in theoretical physics from the University of Salamanca, Spain. I have a master’s in astrophysics from the University of Valencia, Spain, and a second master’s in space technology from the University of Alcalá, Spain. In 2015, I received a doctorate in theoretical physics from the University of Salamanca.

From 2016–2018, I had a postdoctoral fellowship with the Spanish National Research Agency. From 2018–2020, I had a postdoctoral fellowship at Goddard’s Climate and Radiation Laboratory.

I also have an undergraduate degree in economics from the Spanish Open University and an undergraduate degree in law from the University of La Rioja, Spain. I am considering returning to school for a master’s in law to sit for the bar.

What fascinates you about clouds?

As a child, I remember watching clouds moving. I never questioned whether these clouds moved randomly or in a pattern. One day, Sasha Marshak, my supervisor and one of my mentors, asked me to determine if clouds move randomly or in a pattern.

Clouds have a profound impact on our planet. They regulate the Earth’s energy budget. Some clouds reflect radiation that cools our planet while other clouds trap radiation which warms our planet. Cloud behavior is one of the most important factors in regulating climate change.

What is the data from the DSCOVR satellite telling you?

DSCOVR is the only satellite capturing data that shows the entire sunlit part of the Earth at once. The left part of an image is early morning and the right part of an image is nearing sunset. For the first time, we can see how clouds evolve throughout the entire day. Other satellites only capture either a fixed time or a small region of the planet.

We discovered that clouds do not move randomly, they move in patterns. We measure these patterns in terms of cloud fraction (the amount of sky covered by clouds), cloud height and cloud optical thickness. In general, at noon we have the maximum cloud coverage over land and the minimum cloud coverage over sea. Also, at noon, clouds are generally lower and thicker. There is some predictability in the general pattern of cloud movement.

Coming from Spain, what was the most unusual cultural aspect you had to adjust to when you joined your lab?

When I arrived from Spain, my English was not great and I did not understand the cultural aspects. My first email was from Headquarters thanking the whole NASA family. The idea of a work family was something unfamiliar. To me, family meant blood relatives.

After one or two years, I felt that members of my lab were indeed my family. They really care about me as a person and I feel the same about them. We have parties where we do not talk about work, we talk about ourselves and our families. Our lab has people from all over the world, and we all share the same feeling about being part of the NASA family. We have a family at home and also a family at NASA.

Every time I see Sasha, he always asks about my family and about myself before talking about the work. Lazaros Oreopoulos, Sasha’s supervisor, does the same. They really inspire me.

As your mentors, how did Sasha and Lazaros made you feel welcome?

I came here from a different world. I was doing theoretical physics in Spain but my NASA post doc involved data analysis, which is what I am doing now. Sasha also came from a different county and also had a strong mathematical background. I felt that he understood me and the challenges before me. He made me feel extremely welcome and explained some cultural aspects. He made sure that I understood how the lab worked, introduced me to everyone, and invited my wife and me to dinner at his home. He really made me feel part of the NASA family.

Lazaros strikes the perfect balance between being a respected supervisor and acting like family. He always has a winter party for the entire office where everyone brings in homemade food from their country. Our lab has people from many different countries. Lazaros always checks in with me to see how I am doing. He has created a marvelous place where we all feel like family and do great work.

Lazaros and Sasha gave me a chance when they invited me to join their lab. I do not have words to thank them enough for believing in me when I was just a post doc and for guiding me through my career and, most of all, for their incredible advice about life. They are now both family to me.

What advice have your mentors given you?

Both Sasha and Lazaros taught me creativity. They both always ask questions. Even if a question seems at first impossible to answer, eventually you will develop the tools to answer the questions. It was Sasha who asked me if clouds have random behavior or move in patterns. It has taken me a few years to answer his question and now we are making unexpected and important discoveries about clouds.

What do you do for fun?

Now that I have two young children, my fun now is spending as much time as I can with my wife and children. My wife is a biologist and I have learned a lot from her.

What book are you currently reading?

I love reading. I am rereading the “Iliad,” one of my favorites. My favorite book is “The Little Prince.” I read my children a bedtime story every night and now that they are a little older, sometimes they read one to me.

What is your one big dream?

To see my kids have great lives and be happy.

What is your motto?

“If you’re going to try, go all the way.” —Charles Bukowski

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Nov 26, 2024
Editor
Jamie Adkins
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The book cover for the 2025 edition of the Microgravity Materials Research Researcher’s Guide June 2025 Edition
      Most materials are formed from a partially or totally fluid sample, and the transport of heat and mass from the fluid into the solid during solidification inherently influences the formation of the material and its resultant properties. The ISS provides a long-duration microgravity environment for conducting experiments that enables researchers to examine the effects of heat and mass transport on materials processes in the near-absence of gravity-driven forces. The microgravity environment greatly reduces buoyancy-driven convection, hydrostatic pressure, and sedimentation. It can also be advantageous for designing experiments with reduced container interactions. The reduction in these gravity-related sources of heat and mass transport may be taken advantage of to determine how material processes and microstructure formation are affected by gravity-driven and gravity independent sources of heat and mass transfer. 
      Materials science experiments on the ISS have yielded broad and significant scientific advancements, including contributing to the development of improved mathematical models for predicting material properties during processing on Earth and enabling a better understanding of microstructure formation during solidification towards controlling the material properties of various alloys. 
      This researcher’s guide provides information on the acceleration environment of the space station and describes facilities available for materials research. Examples of previous microgravity materials research and descriptions of planned research are also provided.
      PDF readers: PDF [4.3 MB]
      Keep Exploring Discover More Topics
      Station Researcher’s Guide Series
      Opportunities and Information for Researchers
      Space Station Research Results
      Latest News from Space Station Research
      View the full article
    • By NASA
      5 min read
      NASA Launching Rockets Into Radio-Disrupting Clouds
      NASA is launching rockets from a remote Pacific island to study mysterious, high-altitude cloud-like structures that can disrupt critical communication systems. The mission, called Sporadic-E ElectroDynamics, or SEED, opens its three-week launch window from Kwajalein Atoll in the Marshall Islands on Friday, June 13.
      The atmospheric features SEED is studying are known as Sporadic-E layers, and they create a host of problems for radio communications. When they are present, air traffic controllers and marine radio users may pick up signals from unusually distant regions, mistaking them for nearby sources. Military operators using radar to see beyond the horizon may detect false targets — nicknamed “ghosts” — or receive garbled signals that are tricky to decipher. Sporadic-E layers are constantly forming, moving, and dissipating, so these disruptions can be difficult to anticipate.
      An animated illustration depicts Sporadic-E layers forming in the lower portions of the ionosphere, causing radio signals to reflect back to Earth before reaching higher layers of the ionosphere. NASA’s Goddard Space Flight Center/Conceptual Image Lab Sporadic-E layers form in the ionosphere, a layer of Earth’s atmosphere that stretches from about 40 to 600 miles (60 to 1,000 kilometers) above sea level. Home to the International Space Station and most Earth-orbiting satellites, the ionosphere is also where we see the greatest impacts of space weather. Primarily driven by the Sun, space weather causes myriad problems for our communications with satellites and between ground systems. A better understanding of the ionosphere is key to keeping critical infrastructure running smoothly.
      The ionosphere is named for the charged particles, or ions, that reside there. Some of these ions come from meteors, which burn up in the atmosphere and leave traces of ionized iron, magnesium, calcium, sodium, and potassium suspended in the sky. These “heavy metals” are more massive than the ionosphere’s typical residents and tend to sink to lower altitudes, below 90 miles (140 kilometers). Occasionally, they clump together to create dense clusters known as Sporadic-E layers.
      The Perseids meteor shower peaks in mid-August. Meteors like these can deposit metals into Earth’s ionosphere that can help create cloud-like structures called Sporadic-E layers. NASA/Preston Dyches “These Sporadic-E layers are not visible to naked eye, and can only be seen by radars. In the radar plots, some layers appear like patchy and puffy clouds, while others spread out, similar to an overcast sky, which we call blanketing Sporadic-E layer” said Aroh Barjatya, the SEED mission’s principal investigator and a professor of engineering physics at Embry-Riddle Aeronautical University in Daytona Beach, Florida. The SEED team includes scientists from Embry-Riddle, Boston College in Massachusetts, and Clemson University in South Carolina.
      “There’s a lot of interest in predicting these layers and understanding their dynamics because of how they interfere with communications,” Barjatya said.
      A Mystery at the Equator
      Scientists can explain Sporadic-E layers when they form at midlatitudes but not when they appear close to Earth’s equator — such as near Kwajalein Atoll, where the SEED mission will launch.
      In the Northern and Southern Hemispheres, Sporadic-E layers can be thought of as particle traffic jams.
      Think of ions in the atmosphere as miniature cars traveling single file in lanes defined by Earth’s magnetic field lines. These lanes connect Earth end to end — emerging near the South Pole, bowing around the equator, and plunging back into the North Pole.
      A conceptual animation shows Earth’s magnetic field. The blue lines radiating from Earth represent the magnetic field lines that charged particles travel along. NASA’s Goddard Space Flight Center/Conceptual Image Lab At Earth’s midlatitudes, the field lines angle toward the ground, descending through atmospheric layers with varying wind speeds and directions. As the ions pass through these layers, they experience wind shear — turbulent gusts that cause their orderly line to clump together. These particle pileups form Sporadic-E layers.
      But near the magnetic equator, this explanation doesn’t work. There, Earth’s magnetic field lines run parallel to the surface and do not intersect atmospheric layers with differing winds, so Sporadic-E layers shouldn’t form. Yet, they do — though less frequently.
      “We’re launching from the closest place NASA can to the magnetic equator,” Barjatya said, “to study the physics that existing theory doesn’t fully explain.”
      Taking to the Skies
      To investigate, Barjatya developed SEED to study low-latitude Sporadic-E layers from the inside. The mission relies on sounding rockets — uncrewed suborbital spacecraft carrying scientific instruments. Their flights last only a few minutes but can be launched precisely at fleeting targets.
      Beginning the night of June 13, Barjatya and his team will monitor ALTAIR (ARPA Long-Range Tracking and Instrumentation Radar), a high-powered, ground-based radar system at the launch site, for signs of developing Sporadic-E layers. When conditions are right, Barjatya will give the launch command. A few minutes later, the rocket will be in flight.
      The SEED science team and mission management team in front of the ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR). The SEED team will use ALTAIR to monitor the ionosphere for signs of Sporadic-E layers and time the launch. U.S. Army Space and Missile Defense Command On ascent, the rocket will release colorful vapor tracers. Ground-based cameras will track the tracers to measure wind patterns in three dimensions. Once inside the Sporadic-E layer, the rocket will deploy four subpayloads — miniature detectors that will measure particle density and magnetic field strength at multiple points. The data will be transmitted back to the ground as the rocket descends.
      On another night during the launch window, the team will launch a second, nearly identical rocket to collect additional data under potentially different conditions.
      Barjatya and his team will use the data to improve computer models of the ionosphere, aiming to explain how Sporadic-E layers form so close to the equator.
      “Sporadic-E layers are part of a much larger, more complicated physical system that is home to space-based assets we rely on every day,” Barjatya said. “This launch gets us closer to understanding another key piece of Earth’s interface to space.”
      By Miles Hatfield
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jun 12, 2025 Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division Ionosphere Missions NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate Sounding Rockets Sounding Rockets Program The Solar System The Sun Uncategorized Wallops Flight Facility Weather and Atmospheric Dynamics Explore More
      9 min read The Earth Observer Editor’s Corner: April–June 2025


      Article


      22 hours ago
      5 min read NASA’s Webb ‘UNCOVERs’ Galaxy Population Driving Cosmic Renovation


      Article


      22 hours ago
      6 min read Frigid Exoplanet in Strange Orbit Imaged by NASA’s Webb


      Article


      2 days ago
      Keep Exploring Discover Related Topics
      Sounding Rockets



      Ionosphere, Thermosphere & Mesosphere



      Space Weather


      Solar flares, coronal mass ejections, solar particle events, and the solar wind form the recipe space weather that affects life…


      Solar System


      View the full article
    • By Space Force
      Vandenberg Space Force Base stands as a vital hub where Guardians and Airmen oversee launches that safeguard U.S. interests and uphold America’s edge in the space domain.

      View the full article
    • By NASA
      ESA/Hubble & NASA, C. Murray This NASA/ESA Hubble Space Telescope image features a sparkling cloudscape from one of the Milky Way’s galactic neighbors, a dwarf galaxy called the Large Magellanic Cloud. Located 160,000 light-years away in the constellations Dorado and Mensa, the Large Magellanic Cloud is the largest of the Milky Way’s many small satellite galaxies.
      This view of dusty gas clouds in the Large Magellanic Cloud is possible thanks to Hubble’s cameras, such as the Wide Field Camera 3 (WFC3) that collected the observations for this image. WFC3 holds a variety of filters, and each lets through specific wavelengths, or colors, of light. This image combines observations made with five different filters, including some that capture ultraviolet and infrared light that the human eye cannot see.
      The wispy gas clouds in this image resemble brightly colored cotton candy. When viewing such a vividly colored cosmic scene, it is natural to wonder whether the colors are ‘real’. After all, Hubble, with its 7.8-foot-wide (2.4 m) mirror and advanced scientific instruments, doesn’t bear resemblance to a typical camera! When image-processing specialists combine raw filtered data into a multi-colored image like this one, they assign a color to each filter. Visible-light observations typically correspond to the color that the filter allows through. Shorter wavelengths of light such as ultraviolet are usually assigned blue or purple, while longer wavelengths like infrared are typically red.
      This color scheme closely represents reality while adding new information from the portions of the electromagnetic spectrum that humans cannot see. However, there are endless possible color combinations that can be employed to achieve an especially aesthetically pleasing or scientifically insightful image.
      Learn how Hubble images are taken and processed.
      Text credit: ESA/Hubble
      Image credit: ESA/Hubble & NASA, C. Murray
      View the full article
    • By NASA
      NASA and ISRO (Indian Space Research Organisation) are collaborating to launch scientific investigations aboard Axiom Mission 4, the fourth private astronaut mission to the International Space Station. These studies include examining muscle regeneration, growth of sprouts and edible microalgae, survival of tiny aquatic organisms, and human interaction with electronic displays in microgravity.
      The mission is targeted to launch no earlier than Tuesday, June 10, aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket from NASA’s Kennedy Space Center in Florida
      Regenerating muscle tissue
      Immunofluorescent image of human muscle fibers for Myogenesis-ISRO, showing nuclei (blue) and proteins (red).Institute for Stem Cell Science and Regenerative Medicine, India During long-duration spaceflights, astronauts lose muscle mass, and their muscle cells’ regenerative ability declines. Researchers suspect this may happen because microgravity interferes with metabolism in mitochondria, tiny structures within cells that produce energy. The Myogenesis-ISRO investigation uses muscle stem cell cultures to examine the muscle repair process and test chemicals known to support mitochondrial function. Results could lead to interventions that maintain muscle health during long-duration space missions, help people on Earth with age-related muscle loss and muscle-wasting diseases, and assist athletes and people recovering from surgery.
      Sprouting seeds
      This preflight image shows sprouted fenugreek seeds for the Sprouts-ISRO investigation.Ravikumar Hosamani Lab, University of Agricultural Sciences, India The Sprouts-ISRO investigation looks at the germination and growth in microgravity of seeds from greengram and fenugreek, nutritious plants commonly eaten on the Indian subcontinent. Bioactive compounds in fenugreek seeds also have therapeutic properties, and the leaves contain essential vitamins and minerals. Learning more about how space affects the genetics, nutritional content, and other characteristics over multiple generations of plants could inform the development of ways for future missions to reliably produce plants as a food source. 
      Microalgae growth
      Culture bags for Space Microalgae-ISRO.Redwire Space Microalgae-ISRO studies how microgravity affects microalgae growth and genetics. Highly digestible microalgae species packed with nutrients could be a food source on future space missions. These organisms also grow quickly, produce energy and oxygen, and consume carbon dioxide, traits that could be employed in life support and fuel systems on spacecraft and in certain scenarios on Earth.  
      Tiny but tough
      NASA astronaut Peggy Whitson sets up the BioServe microscope, which will be used by the Voyager Tardigrade-ISRO investigation.NASA Tardigrades are tiny aquatic organisms that can tolerate extreme conditions on Earth. Voyager Tardigrade-ISRO tests the survival of a strain of tardigrades in the harsh conditions of space, including cosmic radiation and ultra-low temperatures, which kill most life forms. Researchers plan to revive dormant tardigrades, count the number of eggs laid and hatched during the mission, and compare the gene expression patterns of populations in space and on the ground. Results could help identify what makes these organisms able to survive extreme conditions and support development of technology to protect astronauts on future missions and those in harsh environments on Earth. 
      Improving electronic interactions
      NASA astronaut Loral O’Hara interacts with a touchscreen. Voyager Displays-ISRO examines how spaceflight affects use of such devices.NASA Research shows that humans interact with touchscreen devices differently in space. Voyager Displays – ISRO examines how spaceflight affects interactions with electronic displays such as pointing tasks, gaze fixation, and rapid eye movements along with how these interactions affect the user’s feelings of stress or wellbeing. Results could support improved design of control devices for spacecraft and habitats on future space missions as well as for aviation and other uses on Earth.
      Download high-resolution photos and videos of the research mentioned in this article.
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Latest News from Space Station Research
      Humans In Space
      Space Station Research Results
      View the full article
  • Check out these Videos

×
×
  • Create New...