Members Can Post Anonymously On This Site
NASA’s Europa Clipper: Millions of Miles Down, Instruments Deploying
-
Similar Topics
-
By NASA
Dr. Steven “Steve” Platnick took the NASA agency Deferred Resignation Program (DRP). His last work day was August 8, 2025. Steve spent more than three decades at, or associated with, NASA. While he began his civil servant career at the NASA’s Goddard Space Flight Center (GSFC) in 2002, his Goddard association went back to 1993, first as a contractor and then as one of the earliest employees of the Joint Center for Earth Systems Technology (JCET), a cooperative agreement between the University of Maryland, Baltimore County (UMBC) and GSFC’s Earth Science Division. At JCET Steve helped lead the development of the Atmosphere Physics Track curricula. Previously, he had held an NRC post-doctoral fellow at the NASA’s Ames Research Center. Along with his research work on cloud remote sensing from satellite and airborne sensors, Steve served as the Deputy Director for Atmospheres in GSFC’s Earth Sciences Division from January 2015–July 2024.
Dr. Steve Platnick Image credit: NASA During his time at NASA, Steve played an integral role in the sustainability and advancement of NASA’s Earth Observing System platforms and data. In 2008, he took over as the Earth Observing System (EOS) Senior Project Scientist from Michael King. In this role, he led the EOS Project Science Office, which included support for related EOS facility airborne sensors, ground networks, and calibration labs. The office also supported The Earth Observer newsletter, the NASA Earth Observatory, and other outreach and exhibit activities on behalf of NASA Headquarter’s Earth Science Division and Science Mission Directorate (further details below). From January 2003 – February 2010, Steve served as the Aqua Deputy Project Scientist.
Improving Imager Cloud Algorithms
Steve was actively involved in the Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team serving as the Lead for the MODIS Atmosphere Discipline Team (cloud, aerosol and clear sky products) since 2008 and as the NASA Suomi National Polar-orbiting Partnership (Suomi NPP)/JPSS Atmosphere Discipline Lead/co-Lead from 2012–2020. His research team enhanced, maintained, and evaluated MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) cloud algorithms that included Level-2 (L2) Cloud Optical/Microphysical Properties components (MOD06 and MYD06 for MODIS on Terra and Aqua, respectively) and the Atmosphere Discipline Team Level-3 (L3) spatial/temporal products (MOD08, MYD08). The L2 cloud algorithms were developed to retrieve thermodynamic phase, optical thickness, effective particle radius, and derived water path for liquid and ice clouds, among other associated datasets. Working closely with longtime University of Wisconsin-Madison colleagues, the team also developed the CLDPROP continuity products designed to bridge the MODIS and VIIRS cloud data records by addressing differences in the spectral coverage between the two sensors; this product is currently in production for VIIRS on Suomi NPP and NOAA-20, as well as MODIS Aqua. The team also ported their CLDPROP code to Geostationary Operational Environmental Satellites (GOES) R-series Advanced Baseline Imager (ABI) and sister sensors as a research demonstration effort.
Steve’s working group participation included the Global Energy and Water Exchanges (GEWEX) Cloud Assessment Working Group (2008–present); the International Cloud Working Group (ICWG), which is part of the Coordination Group for Meteorological Satellites (CGMS), and its original incarnation, the Cloud Retrieval Evaluation Working (CREW) since 2009; and the NASA Observations for Modeling Intercomparison Studies (obs4MIPs) Working Group (2011–2013). Other notable roles included Deputy Chair of the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Science Definition Team (2011–2012) and membership in the Advanced Composition Explorer (ACE) Science Definition Team (2009–2011), the ABI Cloud Team (2005–2009), and the Climate Absolute Radiance and Refractivity Observatory (CLARREO) Mission Concept Team (2010-2011).
Steve has participated in numerous major airborne field campaigns over his career. His key ER-2 flight scientist and/or science team management roles included the Monterey Area Ship Track experiment (MAST,1994), First (International Satellite Cloud Climatology Project (ISCCP) Regional Experiment – Arctic Cloud Experiment [FIRE-ACE, 1998], Southern Africa Fire-Atmosphere Research Initiative (SAFARI-2000), Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment (CRYSTAL-FACE, 2002), and Tropical Composition, Cloud and Climate Coupling (TC4, 2007).
Supporting Earth Science Communications
Through his EOS Project Science Office role, Steve has been supportive of the activities of NASA’s Science Support Office (SSO) and personally participated in many NASA Science exhibits at both national and international scientific conferences, including serving as a Hyperwall presenter numerous times.
For The Earth Observer newsletter publication team in particular, Steve replaced Michael King as Acting EOS Senior Project Scientist in June 2008, taking over the authorship of “The Editor’s Corner” beginning with the May–June 2008 issue [Volume 20, Issue 3]. The Acting label was removed beginning with the January–February 2010 issue [Volume 22, Issue 1]. Steve has been a champion of continuing to retain a historical record of NASA science team meetings to maintain a chronology of advances made by different groups within the NASA Earth Science community. He was supportive of the Executive Editor’s efforts to create a series called “Perspectives on EOS,” which ran from 2008–2011 and told the stories of the early years of the EOS Program from the point of view of those who lived them. He also supported the development of articles to commemorate the 25th and 30th anniversary of The Earth Observer. Later, Steve helped guide the transition of the newsletter from a print publication – the November–December 2022 issue was the last printed issue – to fully online by July 2024, a few months after the publication’s 35th anniversary. The Earth Observer team will miss Steve’s keen insight, historical perspective, and encouragement that he has shown through his leadership for the past 85 issues of print and online publications.
A Career Recognized through Awards and Honors
Throughout his career, Steve has amassed numerous honors, including the Goddard William Nordberg Memorial Award for Earth Science in 2023 and the Verner E. Suomi Award from the American Meteorological Society (AMS) in 2016. He was named an AMS Fellow that same year. He received two NASA Agency Honor Awards – the Exceptional Achievement Medal in 2008 and the Exceptional Service Medal in 2015.
Steve received his bachelor’s degree and master’s degree in electrical engineering from Duke University and the University of California, Berkeley, respectively. He earned a Ph.D. in atmospheric sciences from the University of Arizona.
View the full article
-
By NASA
NASA/Keegan Barber The members of NASA’s SpaceX Crew-10 mission – Roscosmos cosmonaut Kirill Peskov, left, NASA astronauts Nichole Ayers and Anne McClain, and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi – are all smiles after having landed in the Pacific Ocean off the coast of San Diego, Calif., Saturday, Aug. 9, 2025. The crew spent seven months aboard the International Space Station.
Along the way, Crew-10 contributed hundreds of hours to scientific research, maintenance activities, and technology demonstrations. McClain, Ayers, and Onishi completed investigations on plant and microalgae growth, examined how space radiation affects DNA sequences in plants, observed how microgravity changes human eye structure and cells in the body, and more. The research conducted aboard the orbiting laboratory advances scientific knowledge and demonstrates new technologies that enable us to prepare for human exploration of the Moon and Mars.
McClain and Ayers also completed a spacewalk on May 1. It was the third spacewalk for McClain and the first for Ayers.
See more photos from Crew-10 Splashdown.
Image credit: NASA/Keegan Barber
View the full article
-
By NASA
The SpaceX Crew Dragon Endurance spacecraft is seen as it lands with NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov aboard in the Pacific Ocean off the coast of San Diego, Saturday, Aug. 9, 2025.Credit: NASA/Keegan Barber The first crew to splash down in the Pacific Ocean off the coast of California as part of NASA’s Commercial Crew Program completed the agency’s 10th commercial crew rotation mission to the International Space Station on Saturday.
NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov returned to Earth at 11:33 a.m. EDT. Teams aboard SpaceX recovery vessels retrieved the spacecraft and its crew. After returning to shore, the crew will fly to NASA’s Johnson Space Center in Houston and reunite with their families.
“Splashdown! Crew-10 is back on Earth from the International Space Station marking the completion of another successful flight,” said NASA acting Administrator Sean Duffy. “Our crew missions are the building blocks for long-duration, human exploration pushing the boundaries of what’s possible. NASA is leading the way by setting a bold vision for exploration where we have a thriving space industry supporting private space stations in low Earth orbit, as well as humans exploring the Moon and Mars.”
The agency’s SpaceX Crew-10 mission lifted off at 7:03 p.m. on March 14, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. About 29 hours later, the crew’s SpaceX Dragon spacecraft docked to the Harmony module’s space-facing port at 12:04 a.m. on March 16. Crew-10 undocked at 6:15 p.m. Aug. 8, to begin the trip home.
During their mission, crew members traveled nearly 62,795,205 million miles and completed 2,368 orbits around Earth. The Crew-10 mission was the first spaceflight for Ayers and Peskov, and the second spaceflight for McClain and Onishi. McClain has logged 352 days in space over her two flights, and Onishi has logged 263 days in space during his flights.
Along the way, Crew-10 contributed hundreds of hours to scientific research, maintenance activities, and technology demonstrations. McClain, Ayers, and Onishi completed investigations on plant and microalgae growth, examined how space radiation affects DNA sequences in plants, observed how microgravity changes human eye structure and cells in the body, and more. The research conducted aboard the orbiting laboratory advances scientific knowledge and demonstrates new technologies that enable us to prepare for human exploration of the Moon and Mars.
McClain and Ayers also completed a spacewalk on May 1, relocating a communications antenna, beginning the installation of a mounting bracket for a future International Space Station Roll-Out Solar Array, and other tasks. It was the third spacewalk for McClain, the first for Ayers, and the 275th supporting space station assembly, maintenance, and upgrades.
Crew-10’s return to Earth follows the Crew-11 mission, which docked to the station on Aug. 2 for its long-duration science expedition.
NASA’s Commercial Crew Program provides reliable access to space, maximizing the use of the International Space Station for research and development, and supporting future missions beyond low Earth orbit, such as to the Moon and Mars, by partnering with private U.S. companies, including SpaceX, to transport astronauts to and from the space station.
Learn more about NASA’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
-end-
Joshua Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
Sandra Jones / Joseph Zakrzewski
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
Steven Siceloff
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov
Share
Details
Last Updated Aug 09, 2025 LocationNASA Headquarters Related Terms
International Space Station (ISS) Commercial Crew Humans in Space ISS Research View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Europa Clipper’s radar instrument received echoes of its very-high-frequency radar signals that bounced off Mars and were processed to develop this radargram. What looks like a skyline is the outline of the topography beneath the spacecraft.NASA/JPL-Caltech/UT-Austin The agency’s largest interplanetary probe tested its radar during a Mars flyby. The results include a detailed image and bode well for the mission at Jupiter’s moon Europa.
As it soared past Mars in March, NASA’s Europa Clipper conducted a critical radar test that had been impossible to accomplish on Earth. Now that mission scientists have studied the full stream of data, they can declare success: The radar performed just as expected, bouncing and receiving signals off the region around Mars’ equator without a hitch.
Called REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface), the radar instrument will “see” into Europa’s icy shell, which may have pockets of water inside. The radar may even be able to detect the ocean beneath the shell of Jupiter’s fourth-largest moon.
“We got everything out of the flyby that we dreamed,” said Don Blankenship, principal investigator of the radar instrument, of the University of Texas at Austin. “The goal was to determine the radar’s readiness for the Europa mission, and it worked. Every part of the instrument proved itself to do exactly what we intended.”
In this artist’s concept, Europa Clipper’s radar antennas — seen at the lower edge of the solar panels — are fully deployed. The antennas are key components of the spacecraft’s radar instrument, called REASON.NASA/JPL-Caltech The radar will help scientists understand how the ice may capture materials from the ocean and transfer them to the surface of the moon. Above ground, the instrument will help to study elements of Europa’s topography, such as ridges, so scientists can examine how they relate to features that REASON images beneath the surface.
Limits of Earth
Europa Clipper has an unusual radar setup for an interplanetary spacecraft: REASON uses two pairs of slender antennas that jut out from the solar arrays, spanning a distance of about 58 feet (17.6 meters). Those arrays themselves are huge — from tip to tip, the size of a basketball court — so they can catch as much light as possible at Europa, which gets about 1/25th the sunlight as Earth.
The instrument team conducted all the testing that was possible prior to the spacecraft’s launch from NASA’s Kennedy Space Center in Florida on Oct. 14, 2024. During development, engineers at the agency’s Jet Propulsion Laboratory in Southern California even took the work outdoors, using open-air towers on a plateau above JPL to stretch out and test engineering models of the instrument’s spindly high-frequency and more compact very-high-frequency antennas.
But once the actual flight hardware was built, it needed to be kept sterile and could be tested only in an enclosed area. Engineers used the giant High Bay 1 clean room at JPL, where the spacecraft was assembled, to test the instrument piece by piece. To test the “echo,” or the bounceback of REASON’s signals, however, they’d have needed a chamber about 250 feet (76 meters) long — nearly three-quarters the length of a football field.
Enter Mars
The mission’s primary goal in flying by Mars on March 1, less than five months after launch, was to use the planet’s gravitational pull to reshape the spacecraft’s trajectory. But it also presented opportunities to calibrate the spacecraft’s infrared camera and perform a dry run of the radar instrument over terrain NASA scientists have been studying for decades.
As Europa Clipper zipped by the volcanic plains of the Red Planet — starting at 3,100 miles (5,000 kilometers) down to 550 miles (884 kilometers) above the surface — REASON sent and received radio waves for about 40 minutes. In comparison, at Europa the instrument will operate as close as 16 miles (25 kilometers) from the moon’s surface.
All told, engineers were able to collect 60 gigabytes of rich data from the instrument. Almost immediately, they could tell REASON was working well. The flight team scheduled the full dataset to download, starting in mid-May. Scientists relished the opportunity over the next couple of months to examine the information in detail and compare notes.
“The engineers were excited that their test worked so perfectly,” said JPL’s Trina Ray, Europa Clipper deputy science manager. “All of us who had worked so hard to make this test happen — and the scientists seeing the data for the first time — were ecstatic, saying, ‘Oh, look at this! Oh, look at that!’ Now, the science team is getting a head start on learning how to process the data and understand the instrument’s behavior compared to models. They are exercising those muscles just like they will out at Europa.”
Europa Clipper’s total journey to reach the icy moon will be about 1.8 billion miles (2.9 billion kilometers) and includes one more gravity assist — using Earth — in 2026. The spacecraft is currently about 280 million miles (450 million kilometers) from Earth.
More About Europa Clipper
Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory in Southern California leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at NASA Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at NASA Kennedy, managed the launch service for the Europa Clipper spacecraft. The REASON radar investigation is led by the University of Texas at Austin.
Find more information about Europa Clipper here:
https://science.nasa.gov/mission/europa-clipper/
Check out Europa Clipper's Mars flyby in 3D News Media Contacts
Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-287-4115
gretchen.p.mccartney@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.govt
2025-097
Share
Details
Last Updated Aug 01, 2025 Related Terms
Europa Clipper Europa Jet Propulsion Laboratory Jupiter Jupiter Moons Explore More
6 min read How Joint NASA-ESA Sea Level Mission Will Help Hurricane Forecasts
Article 2 hours ago 5 min read How NASA Is Testing AI to Make Earth-Observing Satellites Smarter
Article 1 week ago 5 min read NASA Shares How to Save Camera 370-Million-Miles Away Near Jupiter
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The north polar region of Jupiter’s volcanic moon Io was captured by the JunoCam imager aboard NASA’s Juno during the spacecraft’s 57th close pass of the gas giant on Dec. 30, 2023. A technique called annealing was used to help repair radiation damage to the camera in time to capture this image. Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Gerald Eichstädt An experimental technique rescued a camera aboard the agency’s Juno spacecraft, offering lessons that will benefit other space systems that experience high radiation.
The mission team of NASA’s Jupiter-orbiting Juno spacecraft executed a deep-space move in December 2023 to repair its JunoCam imager to capture photos of the Jovian moon Io. Results from the long-distance save were presented during a technical session on July 16 at the Institute of Electrical and Electronics Engineers Nuclear & Space Radiation Effects Conference in Nashville.
JunoCam is a color, visible-light camera. The optical unit for the camera is located outside a titanium-walled radiation vault, which protects sensitive electronic components for many of Juno’s engineering and science instruments.
This is a challenging location because Juno’s travels carry it through the most intense planetary radiation fields in the solar system. While mission designers were confident JunoCam could operate through the first eight orbits of Jupiter, no one knew how long the instrument would last after that.
Throughout Juno’s first 34 orbits (its prime mission), JunoCam operated normally, returning images the team routinely incorporated into the mission’s science papers. Then, during its 47th orbit, the imager began showing hints of radiation damage. By orbit 56, nearly all the images were corrupted.
The graininess and horizontal lines seen in this JunoCam image show evidence that the camera aboard NASA’s Juno mission suffered radiation damage. The image, which captures one of the circumpolar cyclones on Jupiter’s north pole, was taken Nov. 22, 2023. NASA/JPL-Caltech/SwRI/MSSS Long Distance Microscopic Repair
While the team knew the issue may be tied to radiation, pinpointing what, specifically, was damaged within JunoCam was difficult from hundreds of millions of miles away. Clues pointed to a damaged voltage regulator that is vital to JunoCam’s power supply. With few options for recovery, the team turned to a process called annealing, where a material is heated for a specified period before slowly cooling. Although the process is not well understood, the idea is that the heating can reduce defects in the material.
“We knew annealing can sometimes alter a material like silicon at a microscopic level but didn’t know if this would fix the damage,” said JunoCam imaging engineer Jacob Schaffner of Malin Space Science Systems in San Diego, which designed and developed JunoCam and is part of the team that operates it. “We commanded JunoCam’s one heater to raise the camera’s temperature to 77 degrees Fahrenheit — much warmer than typical for JunoCam — and waited with bated breath to see the results.”
Soon after the annealing process finished, JunoCam began cranking out crisp images for the next several orbits. But Juno was flying deeper and deeper into the heart of Jupiter’s radiation fields with each pass. By orbit 55, the imagery had again begun showing problems.
“After orbit 55, our images were full of streaks and noise,” said JunoCam instrument lead Michael Ravine of Malin Space Science Systems. “We tried different schemes for processing the images to improve the quality, but nothing worked. With the close encounter of Io bearing down on us in a few weeks, it was Hail Mary time: The only thing left we hadn’t tried was to crank JunoCam’s heater all the way up and see if more extreme annealing would save us.”
Test images sent back to Earth during the annealing showed little improvement the first week. Then, with the close approach of Io only days away, the images began to improve dramatically. By the time Juno came within 930 miles (1,500 kilometers) of the volcanic moon’s surface on Dec. 30, 2023, the images were almost as good as the day the camera launched, capturing detailed views of Io’s north polar region that revealed mountain blocks covered in sulfur dioxide frosts rising sharply from the plains and previously uncharted volcanos with extensive flow fields of lava.
Testing Limits
To date, the solar-powered spacecraft has orbited Jupiter 74 times. Recently, the image noise returned during Juno’s 74th orbit.
Since first experimenting with JunoCam, the Juno team has applied derivations of this annealing technique on several Juno instruments and engineering subsystems.
“Juno is teaching us how to create and maintain spacecraft tolerant to radiation, providing insights that will benefit satellites in orbit around Earth,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio. “I expect the lessons learned from Juno will be applicable to both defense and commercial satellites as well as other NASA missions.”
More About Juno
NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency, Agenzia Spaziale Italiana, funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.
More information about Juno is at:
https://www.nasa.gov/juno
News Media Contact
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Deb Schmid
Southwest Research Institute, San Antonio
210-522-2254
dschmid@swri.org
2025-091
Share
Details
Last Updated Jul 21, 2025 Related Terms
Juno Jet Propulsion Laboratory Jupiter Jupiter Moons Explore More
6 min read 5 Things to Know About Powerful New U.S.-India Satellite, NISAR
Article 2 hours ago 6 min read Meet Mineral Mappers Flying NASA Tech Out West
Article 2 weeks ago 3 min read NASA Aircraft, Sensor Technology, Aid in Texas Flood Recovery Efforts
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.