Jump to content

Recommended Posts

Posted
low_STSCI-H-p9617a-k-1340x520.png

The Hubble telescope has snapped a view of several generations of stars in the central region of the Whirlpool Galaxy (M51), located 23 million light-years from Earth in the constellation Canes Venatici (the Hunting Dogs).

The spiral galaxy's massive center, the bright ball of light in the center of the photograph, is about 80 light-years across and has a brightness of about 100 million suns. Astronomers estimate that it is about 400 million years old and has a mass 40 million times larger than our Sun. The concentration of stars is about 5,000 times higher than in our solar neighborhood, the Milky Way Galaxy.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      ESA/Hubble & NASA, M. J. Koss, A. J. Barth The light that the NASA/ESA Hubble Space Telescope collected to create this image reached the telescope after a journey of 250 million years. Its source was the spiral galaxy UGC 11397, which resides in the constellation Lyra (The Lyre). At first glance, UGC 11397 appears to be an average spiral galaxy: it sports two graceful spiral arms that are illuminated by stars and defined by dark, clumpy clouds of dust.
      What sets UGC 11397 apart from a typical spiral lies at its center, where a supermassive black hole containing 174 million times the mass of our Sun grows. As a black hole ensnares gas, dust, and even entire stars from its vicinity, this doomed matter heats up and puts on a fantastic cosmic light show.
      Material trapped by the black hole emits light from gamma rays to radio waves, and can brighten and fade without warning. But in some galaxies, including UGC 11397, thick clouds of dust hide much of this energetic activity from view in optical light. Despite this, UGC 11397’s actively growing black hole was revealed through its bright X-ray emission — high-energy light that can pierce the surrounding dust. This led astronomers to classify it as a Type 2 Seyfert galaxy, a category used for active galaxies whose central regions are hidden from view in visible light by a donut-shaped cloud of dust and gas.
      Using Hubble, researchers will study hundreds of galaxies that, like UGC 11397, harbor a supermassive black hole that is gaining mass. The Hubble observations will help researchers weigh nearby supermassive black holes, understand how black holes grew early in the universe’s history, and even study how stars form in the extreme environment found at the very center of a galaxy.
      Text credit: ESA
      Image credit: ESA/Hubble & NASA, M. J. Koss, A. J. Barth
      View the full article
    • By NASA
      2 min read
      Hubble Captures an Active Galactic Center
      This Hubble image shows the spiral galaxy UGC 11397. ESA/Hubble & NASA, M. J. Koss, A. J. Barth The light that the NASA/ESA Hubble Space Telescope collected to create this image reached the telescope after a journey of 250 million years. Its source was the spiral galaxy UGC 11397, which resides in the constellation Lyra (The Lyre). At first glance, UGC 11397 appears to be an average spiral galaxy: it sports two graceful spiral arms that are illuminated by stars and defined by dark, clumpy clouds of dust.
      What sets UGC 11397 apart from a typical spiral lies at its center, where a supermassive black hole containing 174 million times the mass of our Sun grows. As a black hole ensnares gas, dust, and even entire stars from its vicinity, this doomed matter heats up and puts on a fantastic cosmic light show.
      Material trapped by the black hole emits light from gamma rays to radio waves, and can brighten and fade without warning. But in some galaxies, including UGC 11397, thick clouds of dust hide much of this energetic activity from view in optical light. Despite this, UGC 11397’s actively growing black hole was revealed through its bright X-ray emission — high-energy light that can pierce the surrounding dust. This led astronomers to classify it as a Type 2 Seyfert galaxy, a category used for active galaxies whose central regions are hidden from view in visible light by a donut-shaped cloud of dust and gas.
      Using Hubble, researchers will study hundreds of galaxies that, like UGC 11397, harbor a supermassive black hole that is gaining mass. The Hubble observations will help researchers weigh nearby supermassive black holes, understand how black holes grew early in the universe’s history, and even study how stars form in the extreme environment found at the very center of a galaxy.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Jun 27, 2025 Related Terms
      Hubble Space Telescope Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Galaxy Details and Mergers



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Studies Small but Mighty Galaxy
      This NASA/ESA Hubble Space Telescope features the nearby galaxy NGC 4449. ESA/Hubble & NASA, E. Sabbi, D. Calzetti, A. Aloisi This portrait from the NASA/ESA Hubble Space Telescope puts the nearby galaxy NGC 4449 in the spotlight. The galaxy is situated just 12.5 million light-years away in the constellation Canes Venatici (the Hunting Dogs). It is a member of the M94 galaxy group, which is near the Local Group of galaxies that the Milky Way is part of.
      NGC 4449 is a dwarf galaxy, which means that it is far smaller and contains fewer stars than the Milky Way. But don’t let its small size fool you — NGC 4449 packs a punch when it comes to making stars! This galaxy is currently forming new stars at a much faster rate than expected for its size, which makes it a starburst galaxy. Most starburst galaxies churn out stars mainly in their centers, but NGC 4449 is alight with brilliant young stars throughout. Researchers believe that this global burst of star formation came about because of NGC 4449’s interactions with its galactic neighbors. Because NGC 4449 is so close, it provides an excellent opportunity for Hubble to study how interactions between galaxies can influence the formation of new stars.
      Hubble released an image of NGC 4449 in 2007. This new version incorporates several additional wavelengths of light that Hubble collected for multiple observing programs. These programs encompass an incredible range of science, from a deep dive into NGC 4449’s star-formation history to the mapping of the brightest, hottest, and most massive stars in more than two dozen nearby galaxies.
      The NASA/ESA/CSA James Webb Space Telescope has also observed NGC 4449, revealing in intricate detail the galaxy’s tendrils of dusty gas, glowing from the intense starlight radiated by the flourishing young stars.
      Text Credit: ESA/Hubble
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Jun 20, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Irregular Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Galaxy Details and Mergers



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      Acting NASA Administrator Janet Petro and Anke Kaysser-Pyzalla, chair, Executive Board, DLR (German Aerospace Center, or Deutsches Zentrum für Luft- und Raumfahrt), signed an agreement June 16, 2025, to continue a partnership on space medicine research. With this agreement, DLR will provide new radiation sensors aboard the Orion spacecraft during NASA’s Artemis II mission. Scheduled for launch no later than April 2026, Artemis II will mark the first test flight with crew under Artemis.Credit: DLR While attending the Paris Air Show June 16, NASA acting Administrator Janet Petro signed an agreement with DLR (German Aerospace Center, or Deutsches Zentrum für Luft- und Raumfahrt) to continue a partnership in space medicine research. This renewed collaboration builds on previous radiation mitigation efforts for human spaceflight. As NASA advances the Trump-Vance Administration’s goals for exploration on the Moon and Mars, minimizing exposure to space radiation is one of the key areas the agency is working to protect crew on long duration missions.
      With this agreement, DLR will leverage its human spaceflight expertise and provide new radiation sensors aboard the Orion spacecraft during NASA’s Artemis II mission, building on previous work in this area during the Artemis I mission. Scheduled for launch no later than April 2026, Artemis II will mark the first test flight with crew under Artemis.
      “In keeping with the historic agreements NASA has made with international partners as a part of Artemis, I am pleased to sign a new NASA-DLR joint agreement today, to enable radiation research aboard Artemis II,” said acting NASA Administrator Janet Petro. “The German Aerospace Center has been a valuable partner in Artemis, having previously worked with NASA to test technology critical to our understanding of radiation on humans aboard an Orion spacecraft on Artemis I and providing a CubeSat as part of Artemis II. Following a productive meeting between President Trump and German Chancellor Merz earlier this month, I am excited to build upon our great partnership with Germany.”
      During the Artemis II mission’s planned 10-day journey around the Moon and back, four of DLR’s newly developed M-42 extended (M-42 EXT) radiation detectors will be on board, contributing vital data to support astronaut safety. This next-generation device represents a new phase of research as NASA and DLR continue working together to safeguard human health in space.
      Under the leadership of President Trump, America’s Artemis campaign has reignited NASA’s ambition, sparking international cooperation and cutting-edge innovation. The continued partnership with DLR and the deployment of their advanced M-42 EXT radiation detectors aboard Artemis II exemplifies how the Trump-Vance Administration is leading a Golden Era of Exploration and Innovation that puts American astronauts on the path to the Moon, Mars, and beyond.
      “To develop effective protective measures against the impact of space radiation on the human body, comprehensive and coherent radiation measurements in open space are essential,” says Anke Pagels-Kerp, divisional board member for space at DLR. “At the end of 2022, Artemis I carried 12,000 passive and 16 active detectors inside the Helga and Zohar mannequins, which flew aboard the Orion spacecraft as part of DLR’s MARE project. These provided a valuable dataset – the first continuous radiation measurements ever recorded beyond low Earth orbit. We are now excited to take the next step together with NASA and send our upgraded radiation detectors around the Moon on the Artemis II mission.”
      Through the Artemis campaign, the agency will establish a long-term presence on the Moon for scientific exploration with our commercial and international partners, learn how to live and work away from home, and prepare for future human exploration of Mars.
      For more information about Artemis, visit:
      https://www.nasa.gov/artemis
      -end-
      Bethany Stevens / Rachel Kraft
      Headquarters
      202-358-1600
      bethany.c.stevens@nasa.gv / rachel.h.kraft@nasa.gov
      Share
      Details
      Last Updated Jun 17, 2025 LocationNASA Headquarters Related Terms
      Artemis Artemis 2 NASA Headquarters View the full article
    • By NASA
      Farah Al Fulfulee was just four years old when she started climbing onto the roof of her family’s house in Iraq to gaze at the stars.

      “It scared me how vast and quiet the sky was, but it made me very curious. I grew a deep passion for the stars and constellations and what they might represent,” she said.

      Her father noticed her interest and began bringing home books and magazines about space. Al Fulfulee first read about NASA in those pages and was fascinated by the agency’s mission to explore the cosmos for the benefit of all humanity.

      “Right then I knew I had to be an astronaut! I must go to space myself and get a closer look,” she said. “I knew I must find a way to go and work for NASA and fulfill my dream, working with other people like me who had a passion to explore the universe.”

      Farah Al Fulfulee poses outside the Sonny Carter Training Facility at NASA’s Johnson Space Center in Houston. Image courtesy of Farah Al Fulfulee As a girl growing up in the Middle East, Al Fulfulee had few opportunities to pursue this dream, but she refused to give up. Her dedication to schoolwork and excellence in science and math earned her a spot at the University of Baghdad College of Engineering. She completed a degree in electronic and communication engineering — similar to American electrical and computer engineering programs — and graduated as one of the top 10 students in her class. “We had a graduation party where you dress up as what you want to be in the future,” she recalled. “I wore a spacesuit.”

      Farah Al Fulfulee celebrates her graduation from the University of Baghdad while wearing a spacesuit costume. Image courtesy of Farah Al Fulfulee Al Fulfulee was ready to launch her career, but Iraq did not have a developed space industry and finding work as a female engineer was a challenge. She accepted a project engineer position with a prominent Iraqi engineering firm in the information technology sector and spent four years working for the company in Iraq, Turkey, and Jordan, but she was disappointed to discover that her role involved very little engineering. “I was the only female on the team,” she said. “It was not common for a woman to work in the field or with customers, so I was always left behind to do office work. The job was not fulfilling.”

      Still determined to join NASA, Al Fulfulee kept looking for her chance to come to the United States and finally found one in 2016, when she moved to Oklahoma to be near her sister. A new challenge soon rose: Without a degree from an American school or previous work experience in the United States, engineering opportunities were hard to come by. Al Fulfulee spent the next six years working in quality assurance for a human resources software company while she completed a MicroMasters program in software verification and management from the University of Maryland and honed her English and leadership skills.

      Her big break came in 2022, when she landed a job with Boeing Defense, Space, and Security as a software quality engineer. “I was so excited,” she said. “I knew I was much closer to my dream since Boeing worked in the space industry and I would be able to apply internally to work on a space program.”

      Farah Al Fulfulee participates in a NASA study that evaluated and compared the use of virtual reality and physical mockups to assess space vehicle and systems designs. Image courtesy of Farah Al Fulfulee Less than one year later, Al Fulfulee became a system design and analysis engineer for the International Space Station Program and joined the Station Management and Control Team at NASA’s Johnson Space Center in Houston. She helps develop requirements, monitors performance, and validates testing for electrical systems and software supporting space station payloads. She also designs hardware, software, and interface specifications for those systems. Al Fulfulee has served as the team’s point of contact, delivering verification assessment and data assessment reports for NASA’s SpaceX Crew-9 and Crew-10 missions, as well as the upcoming Axiom Mission 4 flight. She is currently working to support testing and verification for NASA’s SpaceX Crew-11.

      “I could not be happier,” she declared.

      She is also not stopping. “I won’t quit until I wear the blue suit.”

      Farah Al Fulfulee tending to her backyard garden.Image courtesy of Farah Al Fulfulee Al Fulfulee has been an enthusiastic volunteer for various NASA studies, including the Exploration Atmosphere Studies that tested spacewalk safety protocols in an analog environment. She is pursuing a master’s degree in Space Operations Engineering from the University of Colorado, Colorado Springs. She is an avid gardener and learning how to grow produce indoors as a volunteer experimental botanist with the Backyard Produce Project, noting that such knowledge might come in handy on Mars.

      She is also helping to inspire the next generation. Earlier this year, Al Fulfulee was a guest speaker at the Women in Tech & Business Summit in Iraq – an event designed to encourage Iraqi women to pursue technology careers. “I was the only person representing women in space,” she said. “It was a really moving experience.” Al Fulfulee provided practical advice on breaking barriers in aerospace and shared her story with the crowd.

      “I know my path is long and across the continents,” she said, “but I am enjoying my journey.”

      Explore More
      5 min read Johnson’s Jason Foster Recognized for New Technology Reporting Record
      Article 1 day ago 4 min read NASA, DoD Practice Abort Scenarios Ahead of Artemis II Moon Mission
      Article 4 days ago 4 min read Welcome Home, Expedition 72 Crew! 
      Article 6 days ago View the full article
  • Check out these Videos

×
×
  • Create New...