Members Can Post Anonymously On This Site
MapGuard: Advancing emergency evacuation capabilities in the Baltics
-
Similar Topics
-
By NASA
Advancing Single-Photon Sensing Image Sensors to Enable the Search for Life Beyond Earth
A NASA-sponsored team is advancing single-photon sensing Complementary Metal-Oxide-Semiconductor (CMOS) detector technology that will enable future NASA astrophysics space missions to search for life on other planets. As part of their detector maturation program, the team is characterizing sensors before, during, and after high-energy radiation exposure; developing novel readout modes to mitigate radiation-induced damage; and simulating a near-infrared CMOS pixel prototype capable of detecting individual photons.
Single-photon sensing and photon-number resolving CMOS image sensors: a 9.4 Mpixel sensor (left) and a 16.7 Mpixel sensor (right). Credit: CfD, RIT Are we alone in the universe? This age-old question has inspired scientific exploration for centuries. If life on other planets evolves similarly to life on Earth, it can imprint its presence in atmospheric spectral features known asbiosignatures. They include absorption and emission lines in the spectrum produced by oxygen, carbon dioxide, methane, and other molecules that could indicate conditions which can support life. A future NASA astrophysics mission, the Habitable Worlds Observatory (HWO), will seek to find biosignatures in the ultraviolet, optical, and near-infrared (NIR) spectra of exoplanet atmospheres to look for evidence that life may exist elsewhere in the universe.
HWO will need highly sensitive detector technology to detect these faint biosignatures on distant exoplanets. The Single-Photon Sensing Complementary Metal-Oxide-Semiconductor (SPSCMOS) image sensor is a promising technology for this application. These silicon-based sensors can detect and resolve individual optical-wavelength photons using a low-capacitance, high-gain floating diffusion sense node. They operate effectively over a broad temperature range, including at room temperature. They have near-zero read noise, are tolerant to radiation, and generate very little unwanted signal—such as dark current. When cooled to 250 K, the dark current drops to just one electron every half-hour. If either the read noise or dark current is too high, the sensor will fail to detect the faint signals that biosignatures produce.
A research team at the Rochester Institute of Technology (RIT) Center for Detectors (CfD) is accelerating the readiness of these SPSCMOS sensors for use in space missions through detector technology maturation programs funded by NASA’s Strategic Astrophysics Technology and Early Stage Innovations solicitations. These development programs include several key goals:
Characterize critical detector performance metrics like dark current, quantum efficiency, and read noise before, during, and after exposure to high-energy radiation Develop new readout modes for these sensors to mitigate effects from short-term and long-term radiation damage Design a new NIR version of the sensor using Technology Computer-Aided Design (TCAD) software SPSCMOS sensors operate similarly to traditional CMOS image sensors but are optimized to detect individual photons—an essential capability for ultra-sensitive space-based observations, such as measuring the gases in the atmospheres of exoplanets. Incoming photons enter the sensor and generate free charges (electrons) in the sensor material. These charges collect in a pixel’s storage well and eventually transfer to a low-capacitance component called the floating diffusion (FD) sense node where each free charge causes a large and resolved voltage shift. This voltage shift is then digitized to read the signal.
Experiments that measure sensor performance in a space relevant environment use a vacuum Dewar and a thermally-controlled mount to allow precise tuning of the sensors temperature. The Dewar enables testing at conditions that match the expected thermal environment of the HWO instrument, and can even cool the sensor and its on-chip circuits to temperatures colder than any prior testing reported for this detector family. These tests are critical for revealing performance limitations with respect to detector metrics like dark current, quantum efficiency, and read noise. As temperatures change, the electrical properties of on-chip circuits can also change, which affects the read out of charge in a pixel.
The two figures show results for SPSCMOS devices. The figure on the left shows a photon counting histogram with peaks that correspond to photon number. The figure on the right shows the dark current for a SPSCMOS device before and after exposure to 50 krad of 60 MeV protons. Credit: CfD, RIT The radiation-rich environment for HWO will cause temporary and permanent effects in the sensor. These effects can corrupt the signal measured in a pixel, interrupt sensor clocking and digital logic, and can cause cumulative damage that gradually degrades sensor performance. To mitigate the loss of detector sensitivity throughout a mission lifetime, the RIT team is developing new readout modes that are not available in commercial CMOS sensors. These custom modes sample the signal over time (a “ramp” acquisition) to enable the detection and removal of cosmic ray artifacts. In one mode, when the system identifies an artifact, it segments the signal ramp and selectively averages the segments to reconstruct the original signal—preserving scientific data that would otherwise be lost. In addition, a real-time data acquisition system monitors the detector’s power consumption, which may change from the accumulation of damage throughout a mission. The acquisition system records these shifts and communicates with the detector electronics to adjust voltages and maintain nominal operation. These radiation damage mitigation strategies will be evaluated during a number of test programs at ground-based radiation facilities. The tests will help identify unique failure mechanisms that impact SPSCMOS technology when it is exposed to radiation equivalent to the dose expected for HWO.
Custom acquisition electronics (left) that will control the sensors during radiation tests, and an image captured using this system (right). Credit: CfD, RIT While existing SPSCMOS sensors are limited to detecting visible light due to their silicon-based design, the RIT team is developing the world’s first NIR single-photon photodiode based on the architecture used in the optical sensors. The photodiode design starts as a simulation in TCAD software to model the optical and electrical properties of the low-capacitance CMOS architecture. The model simulates light-sensitive circuits using both silicon and Mercury Cadmium Telluride (HgCdTe or MCT) material to determine how well the pixel would measure photo-generated charge if a semiconductor foundry physically fabricated it. It has 2D and 3D device structures that convert light into electrical charge, and circuits to control charge transfer and signal readout with virtual probes that can measure current flow and electric potential. These simulations help to evaluate the key mechanisms like the conversion of light into electrons, storing and transferring the electrons, and the output voltage of the photodiode sampling circuit.
In addition to laboratory testing, the project includes performance evaluations at a ground-based telescope. These tests allow the sensor to observe astronomical targets that cannot be fully replicated in lab. Star fields and diffuse nebulae challenge the detector’s full signal chain under real sky backgrounds with faint flux levels, field-dependent aberrations, and varying seeing conditions. These observations help identify performance limitations that may not be apparent in controlled laboratory measurements.
In January 2025, a team of researchers led by PhD student Edwin Alexani used an SPSCMOS-based camera at the C.E.K. Mees Observatory in Ontario County, New York. They observed star cluster M36 to evaluate the sensor’s photometric precision, and the Bubble Nebula in a narrow-band H-alpha filter. The measured dark current and read noise were consistent with laboratory results.
The team observed photometric reference stars to estimate the quantum efficiency (QE) or the ability for the detector to convert photons into signal. The calculated QE agreed with laboratory measurements, despite differences in calibration methods.
The team also observed the satellite STARLINK-32727 as it passed through the telescope’s field of view and measured negligible persistent charge—residual signal that can remain in detector pixels after exposure to a bright source. Although the satellite briefly produced a bright streak across several pixels due to reflected sunlight, the average latent charge in affected pixels was only 0.03 e–/pix – well below both the sky-background and sensor’s read noise.
Images captured at the C.E.K. Mees Observatory. Left: The color image shows M36 in the Johnson color filters B (blue), V (green), and R (red) bands (left). Right: Edwin Alexani and the SPSCMOS camera (right). Credit: : CfD, RIT As NASA advances and matures the HWO mission, SPSCMOS technology promises to be a game-changer for exoplanet and general astrophysics research. These sensors will enhance our ability to detect and analyze distant worlds, bringing us one step closer to answering one of humanity’s most profound questions: are we alone?
For additional details, see the entry for this project on NASA TechPort.
Project Lead(s): Dr. Donald F. Figer, Future Photon Initiative and Center for Detectors, Rochester Institute of Technology (RIT), supported by engineer Justin Gallagher and a team of students.
Sponsoring Organization(s): NASA Astrophysics Division, Strategic Astrophysics Technology (SAT) Program and NASA Space Technology Mission Directorate (STMD), Early Stage Innovations (ESI) Program
Share
Details
Last Updated Sep 02, 2025 Related Terms
Astrophysics Science-enabling Technology Space Technology Mission Directorate Technology Highlights Explore More
2 min read Hubble Homes in on Galaxy’s Star Formation
Article
4 days ago
5 min read From NASA Citizen Scientist to Astronaut Training: An Interview with Benedetta Facini
Article
1 week ago
5 min read Astronomers Map Stellar ‘Polka Dots’ Using NASA’s TESS, Kepler
Article
1 week ago
View the full article
-
By NASA
A collaboration between NASA and the small business Aloft Sensing produced a new compact radar system that will enable researchers to leverage High Altitude Long Endurance (HALE) platforms to observe dynamic Earth systems. This new radar is small, provides highly sensitive measurements, and doesn’t require GPS for positioning; eventually, it could be used on vehicles in space.
HALE InSAR flies aboard a high-altitude balloon during a test-flight. This lightweight instrument will help researchers measure ground deformation and dynamic Earth systems. Credit: Aloft Sensing Long before a volcano erupts or a mountainous snowpack disappears, millimeter-scale changes in Earth’s surface indicate larger geologic processes are at work. But detecting those minute changes, which can serve as early warnings for impending disasters, is difficult.
With support from NASA’s Earth Science Technology Office (ESTO ) a team of researchers from the small aerospace company Aloft Sensing is developing a compact radar instrument for observing Earth’s surface deformation, topography, and vegetation with unprecedented precision.
Their project, “HALE InSAR,” has demonstrated the feasibility of using high-altitude, long-endurance (HALE) vehicles equipped with Interferometric Synthetic Aperture Radar (InSAR) to observe changes in surface deformation mere millimeters in size and terrain information with centimetric vertical accuracy.
“It’s a level of sensitivity that has eluded traditional radar sensors, without making them bulky and expensive,” said Lauren Wye, CEO of Aloft Sensing and principal investigator for HALE InSAR.
HALE vehicles are lightweight aircraft designed to stay airborne for extended periods of time, from weeks to months and even years. These vehicles can revisit a scene multiple times an hour, making them ideal for locating subtle changes in an area’s geologic environment.
InSAR, a remote sensing technique that compares multiple images of the same scene to detect changes in surface topography or determine structure, is also uniquely well-suited to locate these clues. But traditional InSAR instruments are typically too large to fly aboard HALE vehicles.
HALE InSAR is different. The instrument is compact enough for a variety of HALE vehicles, weighing less than 15 pounds (seven kilograms) and consuming fewer than 300 watts of power, about as much energy as it takes to power an electric bike.
HALE InSAR leverages previously-funded NASA technologies to make such detailed measurements from a small platform: a novel electronically steered antenna and advanced positioning algorithms embedded within an agile software-defined transceiver. These technologies were developed under ESTO’s Instrument Incubation Program (IIP) and Decadal Survey Incubation (DSI) Program, respectively.
“All of the design features that we’ve built into the instrument are starting to showcase themselves and highlight why this payload in particular is distinct from what other small radars might be looking to achieve,” said Wye.
One of those features is a flat phased array antenna, which gives users the ability to focus HALE InSAR’s radar beam without physically moving the instrument. Using a panel about the size of a tablet computer, operators can steer the beam electronically, eliminating the need for gimbles and other heavy components, which helps enable the instrument’s reduced size and weight.
A close up HALE InSAR fixed to a high-altitude airship. The flat planar antenna reduces the instruments mass and eliminates the need for gimbles and other heavy components. Credit: Aloft Sensing “SAR needs to look to the side. Our instrument can be mounted straight down, but look left and right on every other pulse such that we’re collecting a left-looking SAR image and a right-looking SAR image essentially simultaneously. It opens up opportunities for the most mass-constrained types of stratospheric vehicles,” said Wye.
Using advanced positioning algorithms, HALE InSAR also has the unique ability to locate itself without GPS, relying instead on feedback from its own radar signals to determine its position even more accurately. Brian Pollard, Chief Engineer at Aloft Sensing and co-investigator for HALE InSAR, explained that precise positioning is essential for creating high-resolution data about surface deformation and topography.
“SAR is like a long exposure camera, except with radio waves. Your exposure time could be a minute or two long, so you can imagine how much smearing goes on if you don’t know exactly where the radar is,” said Pollard.
Navigating without GPS also makes HALE InSAR ideal for field missions in austere environments where reliable GPS signals may be unavailable, increasing the instrument’s utility for national security applications and science missions in remote locations.
The Aloft Sensing team recently achieved several key milestones, validating their instrument aboard an airship at 65,000 feet as well as small stratospheric balloons. Next, they’ll test HALE InSAR aboard a fixed wing HALE aircraft. A future version of their instrument could even find its way into low Earth orbit on a small satellite.
Wye credits NASA support for helping her company turn a prototype into a proven instrument.
“This technology has been critically enabled by ESTO, and the benefit to science and civil applications is huge,” said Wye. “It also exemplifies the dual-use potential enabled by NASA-funded research. We are seeing significant military interest in this capability now that it is reaching maturity. As a small business, we need this hand-in-hand approach to be able to succeed.”
For more information about opportunities to work with NASA to develop new Earth observation technologies, visit esto.nasa.gov.
For additional details, see the entry for this project on NASA TechPort.
Project Lead: Dr. Lauren Wye, CEO, Aloft Sensing
Sponsoring Organization: NASA’s Instrument Incubation Program (IIP)
Share
Details
Last Updated Aug 19, 2025 Related Terms
Earth Science Division Earth Science Technology Office Science-enabling Technology Technology Highlights Explore More
1 min read Snapshot Wisconsin Celebrates 10 Years and 100 Million Photos Collected!
The Snapshot Wisconsin project recently collected their 100 millionth trail camera photo! What’s more, this…
Article
2 weeks ago
2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica
Article
1 month ago
7 min read A New Alloy is Enabling Ultra-Stable Structures Needed for Exoplanet Discovery
Article
2 months ago
View the full article
-
By NASA
A lifelong baseball fan, Catherine Staggs set out with her family to visit all 30 Major League Baseball stadiums across the United States. That love of the game eventually led them to settle in Houston about eight years ago – a choice that helped lead Staggs to NASA’s Johnson Space Center, where she is a contracting officer for the agency’s Commercial Lunar Payload Services (CLPS) initiative. Through CLPS, she helps manage the contracts with commercial companies delivering science and technology to the Moon. These efforts support NASA’s Artemis campaign and lay the groundwork for continuous human presence on the lunar surface.
Official portrait of Catherine Staggs.NASA She joined NASA as a civil servant in 2018, but Staggs’ career in the federal government stretches back to her college days. She completed an accounting co-op with the Department of Defense as a student at Clemson University in Clemson, South Carolina, and secured a full-time accounting position with the agency following her graduation. She transitioned to a business financial manager position supporting U.S. Marine Corps projects while earning an MBA from The Citadel in Charleston, South Carolina. “That position is where I started to dabble in contracting,” she said.
Staggs moved to Texas in 2014 to be closer to her boyfriend – now husband – who was stationed at Fort Hood in Killeen. She was hired as a contract compliance manager for a small, Killeen-based business that specialized in government contracts, officially launching her career in contracting. When Staggs’ husband retired from the Army, the couple decided to move to Houston because they loved to watch the Houston Astros play ball. Staggs continued working for the contracting company from her new home but missed meeting new people and collaborating with colleagues in person.
“I applied for a contract specialist job with NASA to get back into the office, and the rest is history,” she said.
Her current role at Johnson involves managing the administrative contract functions for the 13 base contracts that support CLPS, which are valued at $2.6 billion. She is also the contracting officer for Firefly’s Blue Ghost Mission-3 and helps to train and develop up-and-coming contract specialists. “I love to see the development each contract specialist has over their career,” she said. “My first Pathways intern is now working full-time for NASA as a contract specialist, and they are working to become a limited warrant contracting officer.”
The Commercial Lunar Payload Services (CLPS) procurement team celebrates the lunar landing of Intuitive Machines’ second CLPS flight at Ellington Field on March 6, 2025. Front row, from left: Doug York, Josh Smith, Tasha Beasley, Aubrie Henspeter, Jennifer Ariens, Catherine Staggs, and Shayla Martin. Back row: John Trahan.NASA Her training experience provides valuable perspective on new team members. “Everyone starts at the bottom, not knowing what they don’t know,” she said. “We all have a beginning, and we need to remember that as we welcome new employees.”
Staggs said that navigating change has at times been difficult in her career, but she strives to remain flexible and open to adjusting work and life to meet the needs of the mission. “My time at NASA has helped develop my leadership skills through confidence in myself and my team,” she said.
Catherine Staggs received a 2023 Johnson Space Center Director’s Commendation Award. From left: Johnson Acting Center Director Steve Koerner, Jeremy Staggs, AJ Staggs, Catherine Staggs, NASA Acting Associate Administrator Vanessa Wyche. NASA She looks forward to mentoring the Artemis Generation and sharing her contracting knowledge with new team members. She also anticipates crossing more baseball stadiums off her family’s list this summer.
Explore More
6 min read NASA Program Builds Bridge From Military to Civilian Careers for Johnson Team Members
Article 4 days ago 2 min read NASA Sees Key Progress on Starlab Commercial Space Station
Article 5 days ago 3 min read Melissa Harris: Shaping NASA’s Vision for a Future in Low Earth Orbit
Article 6 days ago View the full article
-
By Space Force
The new facility is enabling Guardians and mission partners to seamlessly monitor space-based sensors and make rapid, data-driven decisions that enhance missile warning and threat responses for the joint force.
View the full article
-
By Space Force
Gen. Mike Guetlein, Vice Chief of Space Operations, visits Kirtland Air Force Base, signaling the base’s growing importance in space innovation, research and national defense.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.