Members Can Post Anonymously On This Site
Proba-3: Firing laser!
-
Similar Topics
-
By NASA
Keith Barr was born only months before the historic Apollo 11 landing in 1969. While he was too young to witness that giant leap for mankind, the moment sparked a lifelong fascination that set him on a path to design technology that will carry astronauts farther into space than ever before.
Today, Barr serves as a chief engineer and Orion Docking Lidar Field Test lead at NASA’s Johnson Space Center in Houston. He spearheads the field testing of docking lidars for the Orion spacecraft, which will carry astronauts to the Moon on the Artemis III mission. These lidars are critical to enabling Orion to autonomously dock with the human landing system on Artemis III — the mission that will land astronauts near the Moon’s South Pole for the first time in history.
Keith Barr prepares for a wind lidar test flight in one of the U.S. Navy’s Twin Otter aircraft in support of the AC-130 Gunship lidar program. “The Mercury, Gemini, and Apollo missions are some of humanity’s greatest technical achievements,” he said. “To be part of the Artemis chapter is a profound honor.”
In recognition of his contributions, Barr was selected as a NASA Space Flight Awareness Honoree in 2025 for his exceptional dedication to astronaut safety and mission success. Established in 1963, NASA’s Space Flight Awareness Program celebrates individuals who play a vital role in supporting human spaceflight. The award is one of the highest honors presented to the agency’s workforce.
With a career spanning over 25 years at Lockheed Martin, Barr is now recognized as a renowned leader in lidar systems—technologies that use laser light to measure distances. He has led numerous lidar deployments and test programs across commercial aviation, wind energy, and military markets.
In 2019, Barr and his team began planning a multi-phase field campaign to validate Orion’s docking lidars under real-world conditions. They repurposed existing hardware, developed a drone-based simulation system, and conducted dynamic testing at Lockheed Martin facilities in Littleton, Colorado, and Santa Cruz, California.
In Littleton, the team conducted two phases of testing at the Space Operations Simulation Center, evaluating performance across distances ranging from 50 meters to docking. At the Santa Cruz facility, they began much farther out at 6,500 meters and tested down to 10 meters, just before the final docking phase.
Of all these efforts, Barr is especially proud of the ingenuity behind the Santa Cruz tests. To simulate a spacecraft docking scenario, he repurposed a lidar pointing gimbal and test trailer from previous projects and designed a drone-based test system with unprecedented accuracy.
“An often-overlooked portion of any field campaign is the measurement and understanding of truth,” he said. “The system I designed allowed us to record lidar and target positions with accuracy never before demonstrated in outdoor docking lidar testing.”
Testing at the Santa Cruz Facility in California often began before sunrise and continued past sunset to complete the full schedule. Here, a drone hovers at the 10-meter station-keeping waypoint as the sun sets in the background. The test stand at the Santa Cruz Facility had once been used for Agena upper stage rockets—a key piece of hardware used during the Gemini program in the 1960s. “We found a Gemini-era sticker on the door of the test bunker—likely from the time of Gemini VIII, the first space docking completed by Neil Armstrong and David Scott,” Barr said. “This really brought it home to me that we are simply part of the continuing story.”
Keith Barr operates a wind lidar during a live fire test in an AC-130 Gunship aircraft. He is seated next to an open door while flying at 18,000 feet over New Mexico in January 2017. Barr spent more than two decades working on WindTracer—a ground-based Doppler wind lidar system used to measure wind speed and turbulence at airports, wind farms, and in atmospheric research.
The transition from WindTracer to Orion presented new challenges. “Moving onto a space program has a steep learning curve, but I have found success in this new arena and I have learned that I can adapt and I shouldn’t be nervous about the unknown,” he said. “Learning new technologies, applications, and skills keeps my career fun and exciting and I look forward to the next giant leap—whatever it is.”
Keith Barr stands beside the Piper Cherokee 6 aircraft during his time as a captain for New England Airlines. Barr’s passion for flight moves in tandem with his pursuit of innovation. Over his career, he has flown over 1.6 million miles on commercial airlines. “I often joke that I’m on my fourth trip to the Moon and back—just in economy class,” he said.
Before specializing in lidar systems, Barr flew as a captain and assistant chief pilot at New England Airlines, operating small aircraft like the Piper Cherokee 6 and the Britten-Norman Islander.
He also worked at the National Center for Atmospheric Research, contributing to several NASA airborne missions aimed at unraveling the science behind global ozone depletion.
Keith Barr boards NASA’s DC-8 aircraft at Ames Research Center in California before heading to Salina, Kansas, to support a 1996 research mission studying how airplane emissions affect clouds and the atmosphere. As Barr reflects on his journey, he hopes to pass along a sense of legacy to the Artemis Generation. “We are in the process of writing the next chapter of human space exploration history, and our actions, successes, and troubles will be studied and analyzed well into the future,” he said. “We all need to consider how our actions will shape history.”
Explore More
3 min read NASA, ISRO Research Aboard Fourth Private Astronaut Mission to Station
Article 6 days ago 3 min read I Am Artemis: Lili Villarreal
Lili Villarreal fell in love with space exploration from an early age when her and…
Article 6 days ago 6 min read NASA Tests New Ways to Stick the Landing in Challenging Terrain
Article 2 weeks ago View the full article
-
By NASA
5 Min Read NASA 3D Wind Measuring Laser Aims to Improve Forecasts from Air, Space
3D wind measurements from NASA's Aerosol Wind Profiler instrument flying on board a specially mounted aircraft along the East Coast of the U.S. and across the Great Lakes region on Oct. 15, 2024. Credits: NASA/Scientific Visualization Studio Since last fall, NASA scientists have flown an advanced 3D Doppler wind lidar instrument across the United States to collect nearly 100 hours of data — including a flight through a hurricane. The goal? To demonstrate the unique capability of the Aerosol Wind Profiler (AWP) instrument to gather extremely precise measurements of wind direction, wind speed, and aerosol concentration – all crucial elements for accurate weather forecasting.
Weather phenomena like severe thunderstorms and hurricanes develop rapidly, so improving predictions requires more accurate wind observations.
“There is a lack of global wind measurements above Earth’s surface,” explained Kris Bedka, the AWP principal investigator at NASA’s Langley Research Center in Hampton, Virginia. “Winds are measured by commercial aircraft as they fly to their destinations and by weather balloons launched up to twice per day from just 1,300 sites across the globe. From space, winds are estimated by tracking cloud and water vapor movement from satellite images.”
However, in areas without clouds or where water vapor patterns cannot be easily tracked, there are typically no reliable wind measurements. The AWP instrument seeks to fill these gaps with detailed 3D wind profiles.
The AWP instrument (foreground) and HALO instrument (background) was integrated onto the floorboard of NASA’s G-III aircraft. Kris Bedka, project principal investigator, sitting in the rear of the plane, monitored the data during a flight on Sept. 26, 2024. NASA/Maurice Cross Mounted to an aircraft with viewing ports underneath it, AWP emits 200 laser energy pulses per second that scatter and reflect off aerosol particles — such as pollution, dust, smoke, sea salt, and clouds — in the air. Aerosol and cloud particle movement causes the laser pulse wavelength to change, a concept known as the Doppler effect.
The AWP instrument sends these pulses in two directions, oriented 90 degrees apart from each other. Combined, they create a 3D profile of wind vectors, representing both wind speed and direction.
We are measuring winds at different altitudes in the atmosphere simultaneously with extremely high detail and accuracy.
Kris bedka
NASA Research Physical Scientist
“The Aerosol Wind Profiler is able to measure wind speed and direction, but not just at one given point,” Bedka said. “Instead, we are measuring winds at different altitudes in the atmosphere simultaneously with extremely high detail and accuracy.”
Vectors help researchers and meteorologists understand the weather, so AWP’s measurements could significantly advance weather modeling and forecasting. For this reason, the instrument was chosen to be part of the National Oceanic and Atmospheric Administration’s (NOAA) Joint Venture Program, which seeks data from new technologies that can fill gaps in current weather forecasting systems. NASA’s Weather Program also saw mutual benefit in NOAA’s investments and provided additional support to increase the return on investment for both agencies.
On board NASA’s Gulfstream III (G-III) aircraft, AWP was paired with the agency’s High-Altitude Lidar Observatory (HALO) that measures water vapor, aerosols, and cloud properties through a combined differential absorption and high spectral resolution lidar.
Working together for the first time, AWP measured winds, HALO collected water vapor and aerosol data, and NOAA dropsondes (small instruments dropped from a tube in the bottom of the aircraft) gathered temperature, water vapor, and wind data.
The AWP and HALO instrument teams observing incoming data on board NASA’s G-III aircraft over Tennessee while heading south to observe Hurricane Helene. Sept. 26, 2024. NASA/Maurice Cross “With our instrument package on board small, affordable-to-operate aircraft, we have a very powerful capability,” said Bedka. “The combination of AWP and HALO is NASA’s next-generation airborne weather remote sensing package, which we hope to also fly aboard satellites to benefit everyone across the globe.”
The combination of AWP and HALO is NASA's next-generation airborne weather remote sensing package.
kris bedka
NASA Research Physical Scientist
The animation below, based on AWP data, shows the complexity and structure of aerosol layers present in the atmosphere. Current prediction models do not accurately simulate how aerosols are organized throughout the breadth of the atmosphere, said Bedka.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This visualization shows AWP 3D measurements gathered on Oct. 15, 2024, as NASA’s G-III aircraft flew along the East Coast of the U.S. and across the Great Lakes region. Laser light that returns to AWP as backscatter from aerosol particles and clouds allows for measurement of wind direction, speed, and aerosol concentration as seen in the separation of data layers. NASA/Scientific Visualization Studio “When we took off on this particular day, I thought that we would be finding a clear atmosphere with little to no aerosol return because we were flying into what was the first real blast of cool Canadian air of the fall,” described Bedka. “What we found was quite the opposite: an aerosol-rich environment which provided excellent signal to accurately measure winds.”
During the Joint Venture flights, Hurricane Helene was making landfall in Florida. The AWP crew of two pilots and five science team members quickly created a flight plan to gather wind measurements along the outer bands of the severe storm.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This video shows monitors tracking the AWP science team’s location in the western outer bands of Hurricane Helene off the coast of Florida with views outside of the aircraft looking at turbulent storm clouds on Sept. 26, 2024. NASA/Kris Bedka “A 3D wind profile can significantly improve weather forecasts, particularly for storms and hurricanes,” said Harshesh Patel, NOAA’s acting Joint Venture Program manager. “NASA Langley specializes in the development of coherent Doppler wind lidar technology and this AWP concept has potential to provide better performance for NOAA’s needs.”
The flight plan of NASA’s G-III aircraft – outfitted with the Aerosol Wind Profiler – as it gathered data across the Southeastern U.S. and flew through portions of Hurricane Helene on Sept. 26, 2024. The flight plan is overlaid atop a NOAA Geostationary Operational Environmental Satellite-16 (GOES) satellite image from that day. NASA/John Cooney The flights of the AWP lidar are serving as a proving ground for possible integration into a future satellite mission.
“The need to improve global 3D wind models requires a space-based platform,” added Patel. “Instruments like AWP have specific space-based applications that potentially align with NOAA’s mission to provide critical data for improving weather forecasting.”
A view of the outer bands of Hurricane Helene off the coast of Florida during NASA’s science flights demonstrating the Aerosol Wind Profiler instrument on Sept. 26, 2024.NASA/Maurice Cross After the NOAA flights, AWP and HALO were sent to central California for the Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment and the Active Passive profiling Experiment, which was supported by NASA’s Planetary Boundary Layer Decadal Survey Incubation Program and NASA Weather Programs. These missions studied atmospheric processes within the planetary boundary layer, the lowest part of the atmosphere, that drives the weather conditions we experience on the ground.
To learn more about lidar instruments at NASA visit:
NASA Langley Research Center: Generations of Lidar Expertise
About the Author
Charles G. Hatfield
Science Public Affairs Officer, NASA Langley Research Center
Share
Details
Last Updated Apr 28, 2025 LocationNASA Langley Research Center Related Terms
General Airborne Science Clouds Langley Research Center Explore More
3 min read Lunar Space Station Module for NASA’s Artemis Campaign to Begin Final Outfitting
Article 3 days ago 4 min read Navigation Technology
Article 3 days ago 3 min read NASA Tracks Snowmelt to Improve Water Management
Article 4 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
By Wayne Smith
As NASA plans for humans to return to the Moon and eventually explore Mars, a laser beam welding collaboration between NASA’s Marshall Space Flight Center in Huntsville, Alabama, and The Ohio State University in Columbus aims to stimulate in-space manufacturing.
Scientists and engineers from NASA’s Marshall Space Flight Center, participating in the laser beam welding study in August, stand in front of the parabolic plane used for testing. From left, Will Evans, Louise Littles, Emma Jaynes, Andrew O’Connor, and Jeffrey Sowards. Not pictured: Zachary Courtright.Casey Coughlin/Starlab-George Washington Carver Science Park The multi-year effort seeks to understand the physical processes of welding on the lunar surface, such as investigating the effects of laser beam welding in a combined vacuum and reduced gravity environment. The goal is to increase the capabilities of manufacturing in space to potentially assemble large structures or make repairs on the Moon, which will inform humanity’s next giant leap of sending astronauts to Mars and beyond.
“For a long time, we’ve used fasteners, rivets, or other mechanical means to keep structures that we assemble together in space,” said Andrew O’Connor, a Marshall materials scientist who is helping coordinate the collaborative effort and is NASA’s technical lead for the project. “But we’re starting to realize that if we really want strong joints and if we want structures to stay together when assembled on the lunar surface, we may need in-space welding.” The ability to weld structures in space would also eliminate the need to transport rivets and other materials, reducing payloads for space travel. That means learning how welds will perform in space.
To turn the effort into reality, researchers are gathering data on welding under simulated space conditions, such as temperature and heat transfer in a vacuum; the size and shape of the molten area under a laser beam; how the weld cross-section looks after it solidifies; and how mechanical properties change for welds performed in environmental conditions mimicking the lunar surface.
“Once you leave Earth, it becomes more difficult to test how the weld performs, so we are leveraging both experiments and computer modeling to predict welding in space while we’re still on the ground,” said O’Connor.
In August 2024, a joint team from Ohio State’s Welding Engineering and Multidisciplinary Capstone Programs and Marshall’s Materials & Processes Laboratory performed high-powered fiber laser beam welding aboard a commercial aircraft that simulated reduced gravity. The aircraft performed parabolic flight maneuvers that began in level flight, pulled up to add 8,000 feet in altitude, and pushed over at the top of a parabolic arc, resulting in approximately 20 seconds of reduced gravity to the passengers and experiments.
While floating in this weightless environment, team members performed laser welding experiments in a simulated environment similar to that of both low Earth orbit and lunar gravity. Analysis of data collected by a network of sensors during the tests will help researchers understand the effects of space environments on the welding process and welded material.
NASA Marshall engineers and scientists, along with their collaborators from Ohio State University, monitor laser beam welding in a vacuum chamber during a Boeing 727 parabolic flight. From left, Andrew O’Connor, Marshall materials scientist and NASA technical lead for the project; Louise Littles, Marshall materials scientist; and Aaron Brimmer, OSU graduate student.Tasha Dixon/Zero-G “During the flights we successfully completed 69 out of 70 welds in microgravity and lunar gravity conditions, realizing a fully successful flight campaign,” said Will McAuley, an Ohio State welding engineering student.
Funded in part by Marshall and spanning more than two years, the work involves undergraduate and graduate students and professors from Ohio State, and engineers across several NASA centers. Marshall personnel trained alongside the university team, learning how to operate the flight hardware and sharing valuable lessons from previous parabolic flight experiments. NASA’s Langley Research Center in Hampton, Virginia, developed a portable vacuum chamber to support testing efforts.
The last time NASA performed welding in space was during the Skylab mission in 1973. Other parabolic tests have since been performed, using low-powered lasers. Practical welding and joining methods and allied processes, including additive manufacturing, will be required to develop the in-space economy. These processes will repurpose and repair critical space infrastructure and could build structures too large to fit current launch payload volumes. In-space welding could expedite building large habitats in low Earth orbit, spacecraft structures that keep astronauts safe on future missions, and more.
The work is also relevant to understanding how laser beam welding occurs on Earth. Industries could use data to inform welding processes, which are critical to a host of manufactured goods from cars and refrigerators to skyscrapers.
“We’re really excited about laser beam welding because it gives us the flexibility to operate in different environments,” O’Connor said.
There has been a resurgence of interest in welding as we look for innovative ways to put larger structures on the surface of the Moon and other planets.
Andrew O’Connor
Marshall Space Flight Center materials scientist
This effort is sponsored by NASA Marshall’s Research and Development funds, the agency’s Science Mission Directorate Biological and Physical Sciences Division of the agency’s Science Mission Directorate, and NASA’s Space Technology Mission Directorate, including NASA Flight Opportunities.
For more information about NASA’s Marshall Space Flight Center, visit:
https://www.nasa.gov/marshall
Joel Wallace
Marshall Space Flight Center, Huntsville, Alabama
256.544.0034
joel.w.wallace@nasa.gov
Share
Details
Last Updated Nov 07, 2024 Related Terms
Marshall Space Flight Center Explore More
5 min read NASA, Bhutan Conclude Five Years of Teamwork on STEM, Sustainability
Article 3 days ago 23 min read The Marshall Star for October 30, 2024
Article 1 week ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
Article 1 week ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
At the International Astronautical Congress (IAC) in Milan this week, ESA signed a contract for Element #1, the first phase of the HydRON Demonstration System. HydRON, which stands for High thRoughput Optical Network, is set to transform the way data-collecting satellites communicate, using laser technology that will allow satellites to connect with each other and ground networks much faster.
View the full article
-
By NASA
4 Min Read NASA Terminal Transmits First Laser Communications Uplink to Space
NASA's LCOT (Low-Cost Optical Terminal) located at the agency's Goddard Space Flight Center in Greenbelt, Md. Credits: NASA NASA’s LCOT (Low-Cost Optical Terminal), a ground station made of modified commercial hardware, transmitted its first laser communications uplink to the TBIRD (TeraByte Infrared Delivery), a tissue box-sized payload formerly in low Earth orbit.
During the first live sky test, NASA’s LCOT produced enough uplink intensity for the TBIRD payload to identify the laser beacon, connect, and maintain a connection to the ground station for over three minutes. This successful test marks an important achievement for laser communications: connecting LCOT’s laser beacon from Earth to TBIRD required one milliradian of pointing accuracy, the equivalent of hitting a three-foot target from over eight American football fields away.
The test was one of many laser communications achievements TBIRD made possible during its successful, two-year mission. Prior to its mission completion on Sept. 15, 2024, the payload transmitted at a record-breaking 200 gigabits per second. In an actual use case, TBIRD’s three-minute connection time with LCOT would be sufficient to return over five terabytes of critical science data, the equivalent of over 2,500 hours of high-definition video in a single pass. As the LCOT sky test demonstrates, the ultra-high-speed capabilities of laser communications will allow science missions to maintain their connection to Earth as they travel farther than ever before.
Measurement data of the power, or “fluency,” of the connection between NASA’s LCOT (Low-Cost Optical Terminal) laser beacon and TBIRD’s (TeraByte Infrared Delivery) receiver provided by Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL). LCOT and TBIRD maintained a sufficient connection for over three minutes — enough time for TBIRD to return over five terabytes of data. NASA/Dave Ryan NASA’s SCaN (Space Communications and Navigation) program office is implementing laser communications technology in various orbits, including the upcoming Artemis II mission, to demonstrate its potential impact in the agency’s mission to explore, innovate, and inspire discovery.
“Optical, or laser, communications can transfer 10 to 100 times more data than radio frequency waves,” said Kevin Coggins, deputy associate administrator and SCaN program manager. “Literally, it’s the wave of the future, as it’ll enable scientists to realize an ever-increasing amount of data from their missions and will serve as our critical lifeline for astronauts traveling to and from Mars.”
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
A recording of TBIRD’s (TeraByte Infrared Delivery) successful downlink from NASA’s LCOT (Low-Cost Optical Terminal) Wide Field Camera. The light saturation from the downlink caused a secondary reflection in the upper right of the video.NASA Historically, space missions have used radio frequencies to send data to and from space, but with science instruments capturing more data, communications assets must meet increasing demand. The infrared light used for laser communications transmits the data at a shorter wavelength than radio, meaning ground stations on Earth can send and receive more data per second.
The LCOT team continues to refine pointing capabilities through additional tests with NASA’s LCRD (Laser Communications Relay Demonstration). As LCOT and the agency’s other laser communications missions continue to reach new milestones in connectivity and accessibility, they demonstrate laser communications’ potential to revolutionize scientists’ access to new data about Earth, our solar system, and beyond.
“It’s a testament to the hard work and skill of the entire team,” said Dr. Haleh Safavi, project lead for LCOT. “We work with very complicated and sensitive transmission equipment that must be installed with incredible precision. These results required expeditious planning and execution at every level.”
NASA’s LCOT (Low-Cost Optical Terminal) at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, uses slightly modified commercial hardware to reduce the expense of implementing laser communications technology. NASA Experiments like TBIRD and LCRD are only two of SCaN’s multiple in-space demonstrations of laser communications, but a robust laser communications network relies on easily reconfigurable ground stations on Earth. The LCOT ground station showcases how the government and aerospace industry can build and deploy flexible laser communications ground stations to meet the needs of a wide variety of NASA and commercial missions, and how these ground stations open new doors for communications technology and extremely high data volume transmission.
NASA’s LCOT is developed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland. TBIRD was developed in partnership with the Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL) in Lexington. TBIRD was flown and operated as a collaborative effort among NASA Goddard; NASA’s Ames Research Center in California’s Silicon Valley; NASA’s Jet Propulsion Laboratory in Southern California; MIT-LL; and Terran Orbital Corporation in Irvine, California. Funding and oversight for LCOT and other laser communications demonstrations comes from the (SCaN) Space Communications and Navigation program office within the Space Operations Mission Directorate at NASA Headquarters in Washington.
About the Author
Korine Powers
Senior Writer and Education LeadKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, education and outreach, exploration activities, and more.
Share
Details
Last Updated Oct 09, 2024 EditorKorine PowersContactKatherine Schauerkatherine.s.schauer@nasa.govLocationGoddard Space Flight Center Related Terms
Space Communications Technology Communicating and Navigating with Missions Goddard Space Flight Center Space Communications & Navigation Program Space Operations Mission Directorate Technology Technology Demonstration View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.