Jump to content

Weld-ASSIST: Weldability Assessment for In-Space Conditions using a Digital Twin


Recommended Posts

  • Publishers
Posted

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

ESI24 Haghighi Quadchart

Azadeh Haghighi
University of Illinois, Chicago

In-space manufacturing and assembly are vital to NASA’s long-term exploration goals, especially for the Moon and Mars missions. Deploying welding technology in space enables the assembly and repair of structures, reducing logistical burdens and supply needs from Earth. The unique challenges and extreme conditions of space–high thermal variations, microgravity, and vacuum–require advanced welding techniques and computational tools to ensure reliability, repeatability, safety, and structural integrity in one-shot weld scenarios. For the first time, this project investigates these challenges by focusing on three key factors: (1) Very low temperatures in space degrade the weldability of high thermal conductivity materials, like aluminum alloys, making it harder to achieve strong, defect-free welds. (2) The extreme vacuum in space lowers the boiling points of alloying elements, altering the keyhole geometry during welding. This selective vaporization changes the weld’s final chemical composition, affecting its microstructure and properties. (3) Microgravity nearly eliminates buoyancy-driven flow of liquid metal inside the molten pool, preventing gas bubbles from escaping, which leads to porosity and defects in the welds. By examining these critical factors using multi-scale multi-physics models integrated with physics-informed machine learning, and forward/inverse uncertainty quantification techniques, this project provides the first-ever real-time digital twin platform to evaluate welding processes under extreme space/lunar conditions. The models are validated through Earth-based experiments, parabolic flight tests, and publicly available data from different databases and agencies worldwide. Moreover, the established models will facilitate extendibility to support in-situ resource utilization on the Moon, including construction and repair using locally sourced materials like regolith. The established fundamental scientific knowledge will minimize trial-and-error, enable high-quality one-shot welds in space, and reduce the need for reworks, significantly reducing the costs and time needed for space missions.

Back to ESI 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Library
      Scientific papers, industry forum presentations, and videos covering the concepts used in the digital information platform are available to the public. For those interested in a deeper understanding of the technical workings of DIP, please refer to these resources.
      Newsletters
      April 2025
      December 2024
      August 2024
      June 2024
      March 2024
      November 2023
      NASA Feature Stories
      NASA Partners With Airlines to Save Fuel, Reduce Flight Delays
      NASA Flight Rerouting Tool Curbs Delays, Emissions
      NASA Cloud-Based Platform Could Help Streamline, Improve Air Traffic
      NASA Machine Learning Air Traffic Software Saves Fuel
      Technical Papers
      View the Technical Papers
      Events
      View all the Events
      Fuser information from Airspace Technical Demonstration-2 industry day workshop
      Fuser Architecture Overview
      Video recordings of the presentations at the ATD-2 Industry Days
      Online Videos
      2023 Jan 21 – AIAA LA LV NASA’s Digital Information Platform DIP to Accelerate NAS Transformation
      DIP Collaborative Digital Departure Reroute Overview
      Digital Information Platform
      Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      1 min read DIP Events
      Article 11 minutes ago 1 min read DIP Request for Information (RFI) Information Session
      Article 11 minutes ago 2 min read DIP RFI Outbrief Session
      Article 12 minutes ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Jun 18, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Digital Information Platform Air Traffic Management – Exploration View the full article
    • By NASA
      Othmane Benafan is a NASA engineer whose work is literally reshaping how we use aerospace materials — he creates metals that can shape shift. Benafan, a materials research engineer at NASA’s Glenn Research Center in Cleveland, creates metals called shape memory alloys that are custom-made to solve some of the most pressing challenges of space exploration and aviation.

      “A shape memory alloy starts off just like any other metal, except it has this wonderful property: it can remember shapes,” Benafan says. “You can bend it, you can deform it out of shape, and once you heat it, it returns to its shape.”


      An alloy is a metal that’s created by combining two or more metallic elements. Shape memory alloys are functional metals. Unlike structural metals, which are fixed metal shapes used for construction or holding heavy objects, functional metals are valued for unique properties that enable them to carry out specific actions.

      NASA often needs materials with special capabilities for use in aircraft and spacecraft components, spacesuits, and hardware designed for low-Earth orbit, the Moon, or Mars. But sometimes, the ideal material doesn’t exist. That’s where engineers like Benafan come in.

      “We have requirements, and we come up with new materials to fulfill that function,” he said. The whole process begins with pen and paper, theories, and research to determine exactly what properties are needed and how those properties might be created. Then he and his teammates are ready to start making a new metal.
      “It’s like a cooking show,” Benafan says. “We collect all the ingredients — in my case, the metals would be elements from the periodic table, like nickel, titanium, gold, copper, etc. — and we mix them together in quantities that satisfy the formula we came up with. And then we cook it.”
      Othmane Benafan, a materials research engineer, develops a shape memory alloy in a laboratory at NASA’s Glenn Research Center in Cleveland. These elemental ingredients are melted in a container called a crucible, then poured into the required shape, such as a cylinder, plate, or tube. From there, it’s subjected to temperatures and pressures that shape and train the metal to change the way its atoms are arranged every time it’s heated or cooled.
      Shape memory alloys created by Benafan and his colleagues have already proven useful in several applications. For example, the Shape Memory Alloy Reconfigurable Technology Vortex Generator (SMART VG) being tested on Boeing aircraft uses the torque generated by a heat-induced twisting motion to raise and lower a small, narrow piece of hardware installed on aircraft wings, resulting in reduced drag during cruise conditions. In space, the 2018 Advanced eLectrical Bus (ALBus) CubeSat technology demonstration mission included the use of a shape memory alloy to deploy the small satellite’s solar arrays and antennas. And Glenn’s Shape Memory Alloy Rock Splitters technology benefits mining and geothermal applications on Earth by breaking apart rocks without harming the surrounding environment. The shape memory alloy device is wrapped in a heater and inserted into a predrilled hole in the rock, and when the heater is activated, the alloy expands, creating intense pressure that drives the rock apart.
      Benafan’s fascination with shape memory alloys started after he immigrated to the United States from Morocco at age 19. He began attending night classes at the Valencia Community College (now Valencia College), then went on to graduate from the University of Central Florida in Orlando. A professor did a demonstration on shape memory alloys and that changed Benafan’s life forever. Now, Benafan enjoys helping others understand related topics.
       
      “Outside of work, one of the things I like to do most is make technology approachable to someone who may be interested but may not be experienced with it just yet. I do a lot of community outreach through camps or lectures in schools,” he said.
       
      He believes a mentality of curiosity and a willingness to fail and learn are essential for aspiring engineers and encourages others to pursue their ideas and keep trying.
      “You know, we grow up with that mindset of falling and standing up and trying again, and that same thing applies here,” Benafan said. “The idea is to be a problem solver. What are you trying to contribute? What problem do you want to solve to help humanity, to help Earth?”
      To learn more about the wide variety of exciting and unexpected jobs at NASA, check out the Surprisingly STEM video series.
      Explore More
      3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 3 hours ago 3 min read NASA Announces Winners of 2025 Student Launch Competition
      Article 1 day ago 2 min read NASA Seeks Commercial Feedback on Space Communication Solutions
      Article 1 day ago View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Boeing’s test plane simulates digital taxiing at Moffett Field at NASA’s Ames Research Center in California’s Silicon Valley. NASA/Brandon Torres Navarrete New technology tested by an industry partner at NASA’s Ames Research Center in California’s Silicon Valley could improve how commercial planes taxi to and from gates to runways, making operations safer and more efficient on the surfaces of airports.
      Airport taxiways are busy. Planes come and go while support vehicles provide maintenance, carry fuel, transport luggage, and more. Pilots must listen carefully to air traffic control when getting directions to the runway – and garbled communications and heavy workloads can cause issues that could lead to runway incursions or collisions.
      Researchers at Boeing are working to address these issues by digitizing taxiway information and automating aircraft taxi functions. The team traveled to NASA Ames to collaborate with researchers while testing their technology at the Moffett Federal Airfield and NASA’s FutureFlight Central, an air traffic control simulation facility.
      Doug Christensen, test engineer for Air Traffic Management eXploration (ATM-X) at NASA Ames, and Mike Klein, autonomy technical leader in product development at Boeing discuss the digital taxi test in Ames’s FutureFlight Central facility.NASA/Brandon Torres Navarrete To test these new technologies, Boeing brought a custom single-engine test plane to the airfield. Working from FutureFlight Central, their researchers developed simulated taxiway instructions and deployed them to the test pilot’s digital tablet and the autonomous system.
      Typically, taxiing requires verbal communication between an air traffic controller and a pilot. Boeing’s digital taxi release system displays visual turn-by-turn routes and directions directly on the pilot’s digital tablet.
      “This project with Boeing lends credibility to the research being done across Ames,” said Adam Yingling, autonomy researcher for the Air Traffic Management-eXploration (ATM-X) program at NASA Ames. “We have a unique capability with our proximity to Moffett and the work Ames researchers are doing to advance air traffic capabilities and technologies to support the future of our national airspace that opens the door to work alongside commercial operators like Boeing.”
      The team’s autonomous taxiing tests allowed its aircraft to follow the air traffic control’s digital instructions to transit to the runway without additional pilot inputs.
      Estela Buchmann, David Shapiro, and Maxim Mounier, members of the NASA Ames ATM-X project team, analyze results of Boeing’s digital taxi test at Ames’s FutureFlight Central facility.NASA/Brandon Torres Navarrete As commercial air travel increases and airspace gets busier, pilots and air traffic controllers have to manage heavier workloads. NASA is working with commercial partners to address those challenges through initiatives like its Air Traffic Management-eXploration project, which aims to transform air traffic management to accommodate new vehicles and air transportation options.
      “In order to increase the safety and efficiency of our airspace operations, NASA research in collaboration with industry can demonstrate how specific functions can be automated to chart the course for enhancing traffic management on the airport surface,” said Shivanjli Sharma, ATM-X project manager at Ames. 
      Share
      Details
      Last Updated May 22, 2025 Related Terms
      Ames Research Center Aeronautics Aeronautics Research Mission Directorate Air Traffic Control Labs Air Traffic Management – Exploration Air Traffic Solutions Drones & You FutureFlight Central Explore More
      3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition
      Article 49 mins ago 5 min read NASA X-59’s Latest Testing Milestone: Simulating Flight from the Ground
      Article 6 days ago 5 min read NASA Satellite Images Could Provide Early Volcano Warnings 
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA’s Glenn Research Center in Cleveland provides ground test facilities to industry, government, and academia specializing in the following: 
      Acoustics  Engine Components Testing  Full-Scale Engine Testing  Flight Research  Icing Research  Materials and Structures  Microgravity  Space Power and Propulsion  Wind Tunnels  Electromagnetic Interference Laboratory  Our unique facilities offer superior customer service, flexible scheduling, and state-of-the-art testing capabilities. 
      Facility Request Process 
      Customer contacts the facility manager and/or submits a test request form. See below for the Facility Request Form.  The facility manager will contact the customer to discuss the request and obtain detailed test requirements.  After test requirements and schedule are finalized, the facility manager will provide a high-fidelity cost estimate for review and prepare a formal agreement for signature.  Once the agreement is signed by both NASA Glenn and the customer, and the work is funded, the test execution may begin per the agreement.  If you need further information about our facility capabilities or the general testing process, please complete the form below to have your inquiry answered or contact Michael McVetta at 216-433-2832. 
      Facility Request Form
      If you are considering testing in one of our facilities or would like further information about a specific facility or capability, please let us know:
      * indicates a required field
      Name* First Last Organization*Work Phone*Work Email* Facility*If you are not sure of the facility you need, simply indicate that below. I'm not sure10×10 Supersonic Wind Tunnel1×1 Supersonic Wind Tunnel8×6 Wind Tunnel9×16 Wind Tunnel2.2 Second Drop TowerAero-Acoustic Propulsion LaboratoryAdvanced Subsonic Combustion RigCombined Effects ChamberElectric Propulsion LaboratoryElectric Propulsion Research BuildingElectromagnetic Interference LaboratoryEngine Research Building and Related FacilitiesFlight Research BuildingHypersonic Tunnel FacilityIcing Research TunnelIn-Space Propulsion FacilityPropulsion Systems LaboratoryStructural Dynamics LaboratoryStructural Static LaboratoryZero Gravity Research FacilityAdditional CommentsNameThis field is for validation purposes and should be left unchanged. View the full article
    • By NASA
      4 min read
      Entrepreneurs Challenge Winner PRISM is Using AI to Enable Insights from Geospatial Data
      PRISM’s platform uses AI segmentation to identify and highlight residential structures in a neighborhood. NASA sponsored Entrepreneurs Challenge events in 2020, 2021, and 2023 to invite small business start-ups to showcase innovative ideas and technologies with the potential to advance the agency’s science goals. To potentially leverage external funding sources for the development of innovative technologies of interest to NASA, SMD involved the venture capital community in Entrepreneurs Challenge events. Challenge winners were awarded prize money, and in 2023 the total Entrepreneurs Challenge prize value was $1M. Numerous challenge winners have subsequently refined their products and/or received funding from NASA and external sources (e.g., other government agencies or the venture capital community) to further develop their technologies.
      One 2023 Entrepreneurs Challenge winner, PRISM Intelligence (formerly known as Pegasus Intelligence and Space), is using artificial intelligence (AI) and other advances in computer vision to create a new platform that could provide geospatial insights to a broad community.
      Every day, vast amounts of remote sensing data are collected through satellites, drones, and aerial imagery, but for most businesses and individuals, accessing and extracting meaningful insights from this data is nearly impossible.  
      The company’s product—Personal Real-time Insight from Spatial Maps, a.k.a. PRISM—is transforming geospatial data into an easy-to-navigate, queryable world. By leveraging 3D computer vision, geospatial analytics, and AI-driven insights, PRISM creates photorealistic, up-to-date digital environments that anyone can interact with. Users can simply log in and ask natural-language questions to instantly retrieve insights—no advanced Geographic Information System (GIS) expertise is required.
      For example, a pool cleaner looking for business could use PRISM to search for all residential pools in a five-mile radius. A gardener could identify overgrown trees in a community. City officials could search for potholes in their jurisdiction to prioritize repairs, enhance public safety, and mitigate liability risks. This broad level of accessibility brings geospatial intelligence out of the hands of a few and into everyday decision making.
      The core of PRISM’s platform uses radiance fields to convert raw 2D imagery into high-fidelity, dynamic 3D visualizations. These models are then enhanced with AI-powered segmentation, which autonomously identifies and labels objects in the environment—such as roads, vehicles, buildings, and natural features—allowing for seamless search and analysis. The integration of machine learning enables PRISM to refine its reconstructions continuously, improving precision with each dataset. This advanced processing ensures that the platform remains scalable, efficient, and adaptable to various data sources, making it possible to produce large-scale, real-time digital twins of the physical world.
      The PRISM platform’s interface showcasing a 3D digital twin of California State Polytechnic University, Pomona, with AI-powered search and insights. “It’s great being able to push the state of the art in this relatively new domain of radiance fields, evolving it from research to applications that can impact common tasks. From large sets of images, PRISM creates detailed 3D captures that embed more information than the source pictures.” — Maximum Wilder-Smith, Chief Technology Officer, PRISM Intelligence
      Currently the PRISM platform uses proprietary data gathered from aerial imagery over selected areas. PRISM then generates high-resolution digital twins of cities in select regions. The team is aiming to eventually expand the platform to use NASA Earth science data and commercial data, which will enable high-resolution data capture over larger areas, significantly increasing efficiency, coverage, and update frequency. PRISM aims to use the detailed multiband imagery that NASA provides and the high-frequency data that commercial companies provide to make geospatial intelligence more accessible by providing fast, reliable, and up-to-date insights that can be used across multiple industries.
      What sets PRISM apart is its focus on usability. While traditional GIS platforms require specialized training to use, PRISM eliminates these barriers by allowing users to interact with geospatial data through a frictionless, conversational interface.
      The impact of this technology could extend across multiple industries. Professionals in the insurance and appraisal industries have informed the company how the ability to generate precise, 3D assessments of properties could streamline risk evaluations, reduce costs, and improve accuracy—replacing outdated or manual site visits. Similarly, local governments have indicated they could potentially use PRISM to better manage infrastructure, track zoning compliance, and allocate resources based on real-time, high-resolution urban insights. Additionally, scientists could use the consistent updates and layers of three-dimensional data that PRISM can provide to better understand changes to ecosystems and vegetation.
      As PRISM moves forward, the team’s focus remains on scaling its capabilities and expanding its applications. Currently, the team is working to enhance the technical performance of the platform while also adding data sources to enable coverage of more regions. Future iterations will further improve automation of data processing, increasing the speed and efficiency of real-time 3D reconstructions. The team’s goal is to expand access to geospatial insights, ensuring that anyone—from city planners to business owners—can make informed decisions using the best possible data.
      PRISM Intelligence founders Zachary Gaines, Hugo Delgado, and Maximum Wilder-Smith in their California State Polytechnic University, Pomona lab, where the company was first formed. Share








      Details
      Last Updated Apr 21, 2025 Related Terms
      Earth Science Division Earth Science Science-enabling Technology Technology Highlights Explore More
      4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements


      Article


      7 days ago
      4 min read GLOBE Mission Earth Supports Career Technical Education


      Article


      2 weeks ago
      4 min read New York Math Teacher Measures Trees & Grows Scientists with GLOBE


      Article


      2 weeks ago
      View the full article
  • Check out these Videos

×
×
  • Create New...