Jump to content

Northwestern University Takes Top Honors in BIG Idea Lunar Inflatables Challenge 


Recommended Posts

  • Publishers
Posted

Following eight months of intense research, design, and prototyping, six university teams presented their “Inflatable Systems for Lunar Operations” concepts to a panel of judges at NASA’s 2024 Breakthrough, Innovative and Game-Changing (BIG) Idea Challenge forum. 

The challenge, funded by NASA’s Space Technology Mission Directorate and Office of STEM Engagement, seeks novel ideas from higher education on a new topic each year and supports the agency’s Lunar Surface Innovation Initiative in developing new approaches and innovative technologies to pave the way for successful exploration on the surface of the Moon. This year, teams were asked to develop low Size, Weight, and Power inflatable technologies, structures and systems that could benefit future Artemis missions to the Moon and beyond. 

Taking top honors at this year’s forum receiving the Artemis Award was Northwestern University with National Aerospace Corporation & IMS Engineered Products, with their concept titled METALS: Metallic Expandable Technology for Artemis Lunar Structures. The Artemis Award is given to the team whose concept has the best potential to contribute to and be integrated into an Artemis mission.  

northwestern-8d35e3.jpg?w=2048
The Northwestern University BIG Idea Challenge team developed METALS, an inflatable metal concept for long-term storage of cryogenic fluid on the Moon. The concept earned the Artemis Award, top honors in NASA’s 2024 BIG Idea Challenge.
Credit: National Institute of Aerospace

The Artemis Award is a generous recognition of the potential impact that our work can have. We hope it can be a critical part of the Artemis Program moving forward. We’re exceptionally grateful to have the opportunity to engage directly with NASA in research for the Artemis Program in such a direct way while we’re still students.” 

Julian Rocher

Julian Rocher

Team co-lead for Northwestern University

METALS is an inflatable system for long term cryogenic fluid storage on the Moon. Stacked layers of sheet metal are welded along their aligned edges, stacked inside a rocket, and inflated once on the lunar surface. The manufacturing process is scalable, reliable, and simple. Notably, METALS boasts superior performance in the harsh lunar environment, including resistance against radiation, abrasion, micrometeorites, gas permeability, and temperature extremes.

Northwestern University team members pose with lunar inflatable prototypes from their METALS project in NASA’s 2024 BIG Idea Challenge.
Northwestern University team members pose with lunar inflatable prototypes from their METALS project in NASA’s 2024 BIG Idea Challenge.
Credit: Northwestern University

We learned to ask the right questions, and we learned to question what is the status quo and to go above and beyond and think outside the box. It’s a special mindset for everyone to have on this team… it’s what forces us to innovate.” 

Trevor Abbott

Trevor Abbott

Team co-lead for Northwestern University

Arizona State University took home the 2024 BIG Idea Challenge Systems Engineering prize for their project, AEGIS: Inflatable Lunar Landing Pad System. The AEGIS system is designed to deflect the exhaust gasses of lunar landers thereby reducing regolith disturbances generated during landing. The system is deployed on the lunar surface where it uses 6 anchors in its base to secure itself to the ground. Once inflated to its deployed size of 14 m in diameter, AEGIS provides a reusable precision landing zone for incoming landers.

54091224543-1354aa05a5-o.jpg?w=2048
Arizona State University earned the Systems Engineering prize for their BIG Idea Challenge project: AEGIS: Inflatable Lunar Landing Pad System.
Arizona State University


This year’s forum was held in tandem with the Lunar Surface Innovation Consortium’s (LSIC) Fall Meeting at the University of Nevada, Las Vegas, where students had the opportunity to network with NASA and industry experts, attend LSIC panels and presentations, and participate in the technical poster session. The consortium provides a forum for NASA to communicate technological requirements, needs, and opportunities, and for the community to share with NASA existing capabilities and critical gaps. 

We felt that hosting this year’s BIG Idea Forum in conjunction with the LSIC Fall Meeting would be an exciting opportunity for these incredibly talented students to network with today’s aerospace leaders in government, industry, and academia. Their innovative thinking and novel contributions are critical skills required for the successful development of the technologies that will drive exploration on the Moon and beyond.” 

Niki Werkheiser

Niki Werkheiser

Director of Technology Maturation in NASA’s Space Technology Mission Directorate

In February, teams submitted proposal packages, from which six finalists were selected for funding of up to $150,000 depending on each team’s prototype and budget. The finalists then worked for eight months designing, developing, and demonstrating their concepts. The 2024 BIG Idea program concluded at its annual forum, where teams presented their results and answered questions from judges. Experts from NASA, Johns Hopkins Applied Physics Laboratory, and other aerospace companies evaluated the student concepts based on technical innovation, credibility, management, and the teams’ verification testing. In addition to the presentation, the teams provided a technical paper and poster detailing their proposed inflatable system for lunar operations. 

Year after year, BIG Idea student teams spend countless hours working on tough engineering design challenges. Their dedication and ‘game-changing’ ideas never cease to amaze me. They all have bright futures ahead of them.” 

David Moore

David Moore

Program Director for NASA’s Game Changing Development program

NASA’s Space Technology Mission Directorate sponsors the BIG Idea Challenge through a collaboration between its Game Changing Development program and the agency’s Office of STEM Engagement. It is managed by a partnership between the National Institute of Aerospace and Johns Hopkins Applied Physics Laboratory.   

Team presentations, technical papers, and digital posters are available on the BIG Idea website.       

For full competition details, visit:  https://bigidea.nianet.org/2024-challenge

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The visit offered a deeper understanding of local space operations, and underscore the installation’s growing role in advancing national defense through innovation and enlisted force development.

      View the full article
    • By NASA
      Students prepare their robots to enter Artemis Arena during NASA’s Lunabotics competition on May 20, 2025, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida. NASA/Isaac Watson As college students across the country embark upon the academic year, NASA is giving them something else to look forward to – the agency’s 2026 Lunabotics Challenge. Teams interested in participating can submit their applications and supporting materials through NASA’s Stem Gateway portal beginning Monday, Sept. 8.
      Key dates and challenge details are available in the 2026 Lunabotics Challenge Guidebook. Once all applications and supporting materials are received and evaluated, NASA will notify the selected teams to begin the challenge.
      Student teams participating in this year’s challenge will create robots capable of building berms out of lunar regolith – the loose, fragmental material on the Moon’s surface. Structures like these will be important during lunar missions as blast protection during lunar landings and launches, shading for cryogenic propellant tank farms, radiation shielding around nuclear power plants, and other uses critical to future Moon missions.
      “We are excited to continue the Lunabotics competition for universities as NASA develops new Moon to Mars technologies for the Artemis program,” said Robert Mueller, senior technologist at NASA, as well as co-founder and chief judge of the Lunabotics competition. “Excavating and moving regolith is a fundamental need to build infrastructure on the Moon and Mars and this competition creates 21st century skills in the future workforce.”
      An in-person qualifying event will be held May 12-17, 2026, at the University of Central Florida’s Space Institute’s Exolith Lab in Orlando. From this round, the top 10 teams will be invited to bring their robots to the final competition on May 19-21, at the Kennedy Space Center Visitor Complex’s Artemis Arena in Florida, which has an area filled with a lunar regolith simulant. The team scoring the most points will receive the Lunabotics Grand Prize and participate in an exhibition-style event at NASA Kennedy.
      By encouraging innovative construction techniques and assessing student designs and data the same way it does its own prototypes, NASA casts a wider net to find innovative solutions to challenges inherent in future Artemis missions, like developing future lunar excavators, in-situ resource utilization capabilities, and living on the Moon or Mars. With its multidisciplinary approach, Lunabotics also serves as a workforce pipeline, with teams gaining valuable hands-on experience in computer coding, engineering, manufacturing, fabricating, and other crucial skills, while also receiving technical expertise in space technology development.
      NASA’s Lunabotics Challenge, held annually since 2010, is one of several Artemis Student Challenges. The two-semester competition provides U.S. college and technical school teams an opportunity to design, build, and operate a prototype lunar robot using NASA systems engineering processes. Competitions help NASA get innovative design and operational data, reduce risks, and cultivate new ideas needed to return to the Moon under the Artemis campaign to prepare for human exploration of Mars.
      To learn more about Lunabotics, visit:
      https://www.nasa.gov/learning-resources/lunabotics-challenge/
      View the full article
    • By Amazing Space
      BLOOD MOON TONIGHT! Total Lunar Eclipse September 7, 2025 + 5 Amazing Moon Features You Can See!
    • By NASA
      This competition provides a hands-on opportunity for participants to gain critical skills in engineering, computing, electronics, and more that will be required for America’s technical workforce. If you are in sixth to 12th-grade at a U.S. public, private, or charter school – including those in U.S. territories – your challenge is to team up with your schoolmates and develop a science or technology experiment idea for one of the following NASA TechRise flight vehicles:
      Suborbital-Spaceship with approximately 3 minutes of microgravity. High-Altitude Balloon with approximately 4 to 8 hours of flight time at 70,000 to 95,000 feet and exposure to Earth’s atmosphere, high-altitude radiation, and perspective views of our planet. Award: $1,500 each to 60 winning teams
      Open Date: September 4, 2025
      Close Date: November 3, 2025
      For more information, visit: https://www.futureengineers.org/nasatechrise
      View the full article
    • By NASA
      The next era of lunar exploration demands a new kind of wheel – one that can sprint across razor-sharp regolith, shrug off extremely cold nights, and keep a rover rolling day after lunar day. The Rock and Roll with NASA Challenge seeks that breakthrough. If you can imagine a lightweight, compliant wheel that stays tough at higher speeds while carrying lots of  cargo, your ideas could set the pace for surface missions to follow. For this phased Challenge, Phase 1 rewards the best concepts and analyses, Phase 2 funds prototypes, and Phase 3 puts the best wheels through a live obstacle course simulating the lunar terrain. Along the way, you’ll receive feedback from NASA mobility engineers and the chance to see your hardware pushed to its limits.  In Phase 3, to prove concepts, NASA is using MicroChariot, a nimble, 45 kg test rover that will test the best designs from Phase 1 & Phase 2 at the Johnson Space Center Rockyard in Houston, Texas. Whether you’re a student team, a garage inventor, or a seasoned aerospace firm, this is your opportunity to rewrite the playbook of planetary mobility and leave tread marks on the future of exploration. Follow the challenge, assemble your crew, and roll out a solution that takes humanity back to the Moon.
      Award: $155,000 in total prizes
      Open Date: Phase 1 – August 28, 2025; Phase 2 – January 2026; Phase 3 – May 2026
      Close Date: Phase 1 – November 4, 2025; Phase 2 – April 2026; Phase 3 – June 2026
      For more information, visit: https://www.herox.com/NASARockandRoll
      View the full article
  • Check out these Videos

×
×
  • Create New...