Jump to content

Recommended Posts

  • Publishers
Posted

Associate Director for Mission Planning, Earth Sciences, and environmental scientist Robert J. “Bob” Swap makes a difference by putting knowledge into action.

Name: Robert J. “Bob” Swap
Title: Associate Director for Mission Planning, Earth Sciences
Organization: Earth Science Division (Code 610)

Woman wearing a green jacket and man wearing a tan button down shirt with the Goddard logo stand on a runway in front of a plane.
Robert Swap (right) and Karen St. Germain, NASA Earth science director (left) joined NASA’s Student Airborne Research Program, an eight-week summer internship program for rising senior undergraduates during summer 2023.
Photo courtesy of Robert Swap

What do you do and what is most interesting about your role here at Goddard?

I work with our personnel to come up with the most viable mission concepts and put together the best teams to work on these concepts. I love working across the division, and with the center and the broader community, to engage with diverse competent teams and realize their potential in address pressing challenges in the earth sciences.

Why did you become an Earth scientist?

In the mid to late ’70s, the environment became a growing concern. I read all the Golden Guides in the elementary school library to learn about different creatures. I grew up exploring and discovering the surrounding woods, fields, and creeks, both on my own and through scouting and became drawn to nature, its connectedness, and its complexity. The time I spent fishing with my father, a military officer who also worked with meteorology, and my brother helped cement that love. I guess you could say that I became “hooked.”

What is your educational background?

In 1987, I got a B.A. in environmental science from the University of Virginia. While at UVA, I was a walk-on football player, an offensive lineman on UVA’s first ever post-season bowl team. This furthered my understanding of teamwork, how to work with people who were much more skilled than I was, and how to coach. I received master’s and Ph.D. degrees in environmental science from UVA in 1990 and 1996, respectively.

As an undergraduate in environmental sciences, I learned about global biochemical cycling — meaning how carbon and nitrogen move through the living and nonliving systems — while working on research teams in the Chesapeake Bay, the Blue Ridge Mountains and the Amazon Basin.

Before graduating I had the good fortune to participate in the NASA Amazon Boundary Layer Experiment (ABLE-2B) in the central Amazon, which I used to kick off my graduate studies. I then focused on southern African aerosol emissions, transports and depositions for my doctoral studies that ultimately led to a university research fellow postdoc at the University of the Witwatersrand in Johannesburg, South Africa.

What are some of your career highlights?

It has been a crazy journey!

While helping put up meteorological towers in the Amazon deep jungle, we would encounter massive squall lines. These storms were so loud as they rained down on the deep forest that you could not hear someone 10 feet away. One of the neatest things that I observed was that after the storms passed, we would see a fine red dust settling on top of our fleet of white Volkswagen rental vehicles in the middle of the rainforest.

That observation piqued my interest and led to a paper I wrote about Saharan dust being transported to the Amazon basin and its potential implications for the Amazon, especially regarding nutrient losses from the system. Our initial work suggested there was not enough input from Northern Africa to support the system’s nutrient losses. That caused us to start looking to Sub-Saharan Africa as a potential source of these nutritive species.

I finished my master’s during the first Persian Gulf War, and finding a job was challenging. During that phase I diversified my income stream by delivering newspapers and pizzas and also bouncing at a local nightspot so that I could focus on writing papers and proposals related to my research. One of my successes was the winning of a joint National Science Foundation proposal that funded my doctoral research to go to Namibia and examine sources of aerosol and trace gases as part of the larger NASA TRACE-Southern African Atmosphere Fire Research Initiative – 92 (SAFARI-92). We were based at Okaukuejo Rest Camp inside of Namibia’s Etosha National Park for the better part of two months. We characterized conservative chemical tracers of aerosols, their sources and long-range transport from biomass burning regions, which proved, in part, that Central Southern Africa was providing mineral and biomass burning emissions containing biogeochemically important species to far removed, downwind ecosystems thousands of kilometers away.  

When I returned to Africa as a postdoctoral fellow, I  was able to experience other countries and cultures including Lesotho, Mozambique, and Zambia. In 1997, NASA’s AERONET project was also expanding into Africa and I helped Brent Holben and his team deploy instruments throughout Africa in preparation for vicarious validation of instrumentation aboard NASA’s Terra satellite platform.

I returned to UVA as a research scientist to work for Chris Justice and his EOS MODIS/Terra validation team. I used this field experience and the international networks I developed, which contributed to my assuming the role of U.S. principal investigator for NASA’s Southern African Regional Science Initiative. Known as SAFARI 2000, it was an effort that involved 250 scientists from 16 different countries and lasted more than three years. When it ended, I became a research professor and began teaching environmental science and mentoring UVA students on international engagement projects.

Around 2000, I created a regional knowledge network called Eastern/Southern Africa Virginia Network and Association (ESAVANA) that leveraged the formal and informal structures and networks that SAFARI 2000 established. I used my team building and science diplomacy skills to pull together different regional university partners, who each had unique pieces for unlocking the larger puzzle of how southern Africa acted as a regional coupled human-natural system. Each partner had something important to contribute while the larger potential was only possible by leveraging their respective strengths together as a team.

I traveled extensively during this time and was supported in 2001 partially by a Fulbright Senior Specialist Award which allowed me to spend time at the University of Eduardo Mondlane in Maputo Mozambique to help them with hydrology ecosystem issues in the wake of massive floods. We kept the network alive by creating summer study abroad, service learning and intersession January educational programs that drew upon colleagues and their expertise from around the world that attracted new people, energy, and resources to ESAVANA. All of these efforts contributed to a “community of practice” focused on learning about the ethics and protocols of international research. The respectful exchange of committed people and their energies and ideas was key to the effort’s success. I further amplified the impact of this work by contributing my lived and learned experiences to the development of the first ever global development studies major at UVA.

In 2004, I had a bad car accident and as a result have battled back and hip issues ever since. After falling off the research funding treadmill, I had to reconfigure myself in the teaching and program consultant sector. I grew more into a teaching role and was recognized for it by UVA’s Z-Society 2008 Professor of the Year, the Carnegie Foundation for the Advancement of Teaching’s Virginia’s 2012 Professor of the Year, as well as my 2014 induction into UVA’s Academy of Teaching — all while technically a research professor. I was also heavily involved for almost a decade with the American Association for the Advancement of Science and its Center for Science Diplomacy and tasks related to activities such as reviewing the Inter-American Institute for Global Change Research and teaching science diplomacy in short courses for the World Academy of Sciences for the Advancement of Science in Developing Countries located in Trieste, Italy, and the Academy of Science of South Africa.

I worked in the Earth Sciences Division at NASA Headquarters from 2014 to early 2017 as a rotating program support officer as part of the Intergovernmental Personnel Act (IPA), where I supported the atmospheric composition focus area. One of my responsibilities involved serving as a United States Embassy science fellow in the summer of 2015, where I went to Namibia to support one of our Earth Venture Suborbital field campaigns. I came to Goddard in April 2017 to help revector their nascent global network of ground-based, hyperspectral ultraviolet and visible instruments known as the Pandora.

What is your next big project?

I am currently working with the NASA Goddard Earth Science Division front office to craft a vision for the next 20 years, which involves the alignment of people around a process to achieve a desired product. With the field of Earth System Science changing so rapidly, we need to position ourselves within this ever evolving “new space” environment of multi-sectoral partners — governmental, commercial, not-for-profit, and academic — from the U.S. and beyond to study the Earth system. This involves working with other governmental agencies, universities and industrial partners to chart a way forward. We will have a lot of new players. We will be working with partners we never imagined.

We need people who know how to work across these different sectors. One such attempt to “grow our own timber” involves my development of an experimental version of the first NASA Student Airborne Research Program East Coast Edition (SARP and SARP-East), where student participants from a diversity of institutions of higher learning can see the power and promise of what NASA does, how we work together on big projects, and hopefully be inspired to take on the challenges of the future. In other words, I am pushing an exposure to field-based, Earth system science down earlier into their careers to expose them to what NASA does in an integrated fashion.

What assets do you bring to the Earth Science Division front office?

In 2020, I came to the Earth science front office to help lead the division. I make myself available across the division to help inspire, collect, suggest, and coach our rank and file into producing really cool mission concept ideas.

Part of why the front office wanted me is because I use the skills of relationship building, community building, and science diplomacy to make things happen, to create joint ventures.  Having had to support myself for over 20 years on soft money, I learned to become an entrepreneur of sorts — to be scientifically and socially creative — and I was forced to look inward and take an asset-based approach. I look at all the forms of capital I have at hand and use those to make the best of what I have got. In Appalachia, there is an expression: use everything but the squeal from the pig.

Lastly, I bring a quick wit with a good dose of self-deprecating humor that helps me connect with people.

How do you use science diplomacy to make things happen?

Two of the things that bind people together about science are the process of inquiry and utilizing the scientific method, both of which are universally accepted. As such, they allow us to transcend national and cultural divides.

Science diplomacy works best when you start with this common foundation. Starting with this premise in collaborative science allows for conversations to take place focusing on what everyone has in common. You can have difficult conversations and respectful confrontations about larger issues.

Scientists can then talk and build bridges in unique ways. We did this with SAFARI 2000 while working in a region that had seen two major wars and the system of Apartheid within the previous decade. We worked across borders of people who were previously at odds. We did that by looking at something apart from national identity, which was Southern Africa. We focused on how a large-scale system functions and how to make something that incorporates 10 different countries operate as a unit. We wanted to conduct studies showing how the region operated as a functional unit while dealing with transboundary issues. It took a lot of community and trust, and we began with the science community.

What drives you?

I want to put knowledge into action to make a difference. I realize it is not about me, it is about “we.” That is why I came to NASA, to make a difference. There is no other agency in the world where we can harness such a unique and capable group of people.

What do you do for fun?

I enjoy watching sports. I still enjoy hiking, fishing, and tubing down the river. My wife and I like long walks through natural settings with our rescues, Lady, our black-and-tan coonhound, and Duchess, our long-haired German Shepherd Dog. They are our living hot water bottles in the winter.

My wife and I also like to cook together.

Who would you like to thank?

Without a doubt, it starts with my wife, family, and children whom without none of what I have accomplished would have been possible. I have had the good fortune to be able to bring them along on some of my international work, including to Africa.

I am also very grateful to all those people during my school years who stepped in and who did not judge me initially by my less than stellar grades. They gave me the chance to become who I am today.

Who inspires you?

There is an old television show that I really liked called “Connections,” by James Burke. He would start with a topic, go through the history, and show how one action led to another action with unforeseen consequences. He would take something modern like plastics and link it back to Viking times. Extending that affinity for connections, the Resilience Alliance out of Sweden also influences me with their commitment to showing connections and cycles.

My mentors at UVA were always open to serving as a sounding board. They treated me as a colleague, not a student, as a member of the guild even though I was still an apprentice. That left an indelible impression upon me and I always try to do the same. My doctoral mentor Mike Garstang said that he already had a job and that this job was to let me stand on his shoulders to allow me to get to the next level, which is my model.

Another person who was very formative during my early professional career was Jerry Melillo who showed me what it was like to be an effective programmatic mentor. I worked with him as his chief staffer of an external review of the IAI and learned a lot by watching how he ran that activity program.

With respect to NASA, a number of people come to mind: Michael King, Chris Justice, and Tim Suttles, as well as my South African Co-PI, Harold Annegarn, all of whom, at one time or another, took me under their respective wings and mentored me through the whole SAFARI 2000 process. From each of their different perspectives, they taught me how NASA works, how to engage, how to implement a program, and how to navigate office politics. And my sister and our conversations about leadership and what it means to be a servant leader. To be honest, there are scores more individuals who have contributed to my development that I don’t have the space to mention here.

What are some of your guiding principles?

Never lose the wonder — stay curious. “We” not “me.” Seeking to understand before being understood. We all stand on somebody’s shoulders. Humility rather than hubris. Respect. Be the change you wish to see.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Nov 19, 2024
Editor
Madison Olson
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read NASA Expands SPHEREx Science Return Through Commercial Partnership
      A sectional rendering of NASA's SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer). Credits: NASA NASA is partnering with commercial industry to expand our knowledge of Earth, our solar system, and beyond. Recently, NASA collaborated with Kongsberg Satellite Services (KSAT) to support data transfer for the agency’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to explore the origins of the universe. 
      “Not only is NASA moving toward commercialization, the agency is making technological advancements to existing systems and saving millions of dollars in the process — all while expanding human knowledge through science and exploration missions,” said Kevin Coggins, associate administrator for NASA’s SCaN (Space Communications and Navigation) program.
      To receive data from missions in space, NASA relies on the Near Space Network and Deep Space Network, a collection of antennas around the globe.
      In preparation for the recently-launched SPHEREx observatory, NASA needed to upgrade an antenna on the world’s most remote continent: Antarctica.
      Transmitted via NASA’s Near Space Network, this video shows SPHEREx scanning a region of the Large Magellanic Cloud. The shifting colors represent different infrared wavelengths detected by the telescope’s two arrays. Credit: NASA/JPL-Caltech NASA’s SCaN program took a novel approach by leveraging its established commercial partnership with KSAT. While upgraded KSAT antennas were added to the Near Space Network in 2023, SPHEREx required an additional Antarctic antenna that could link to online data storage.
      To support SPHEREx’s polar orbit, KSAT upgraded its Troll, Antarctica antenna and incorporated their own cloud storage system. NASA then connected KSAT’s cloud to the NASA cloud, DAPHNE+ (Data Acquisition Process and Handling Environment).
      As the Near Space Network’s operational cloud services system, DAPHNE+ enables science missions to transmit their data to the network for virtual file storage, processing, and management. 
      “By connecting the Troll antenna to DAPHNE+, we eliminated the need for large, undersea fiberoptic cables by virtually connecting private and government-owned cloud systems, reducing the project’s cost and complexity,” said Matt Vincent, the SPHEREx mission manager for the Near Space Network at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Each day, SPHEREx downlinks a portion of its 20 gigabits of science data through the Troll antenna, which transfers the files across KSAT’s network of relay satellites to the DAPHNE+ cloud. The cloud system combines and centralizes the data from each antenna, allowing access to all of SPHEREx’s health and science data in one convenient place. 
      The SPHEREx mission data is transmitted from space to the Troll Satellite Station, relayed through a network of satellites, and stored in the Near Space Network’s cloud system for easily-accessible analysis by scientists around the world.NASA/Dave Ryan With coverage throughout its orbit, SPHEREx transmits its 3D maps of the celestial sky, offering new insight into what happened a fraction of a second after the big bang. 
      “Missions like SPHEREx use the Near Space Network’s combination of commercial and government antennas,” explained Michael Skube, DAPHNE+ manager at NASA Goddard. “And that is the benefit of DAPHNE+ — it enables the network to pull different sources of information into one central location. The DAPHNE+ system treats government and commercial antennas as part of the same network.” 
      The partnership is mutually beneficial. NASA’s Near Space Network maintains a data connection with SPHEREx as it traverses both poles and KSAT benefits from its antennas’ integration into a robust global network – no new cables required. 
       “We were able to find a networking solution with KSAT that did not require us to put additional hardware in Antarctica,” said Vincent. “Now we are operating with the highest data rate we have ever downlinked from that location.” 
      The upgraded ground station antenna at Troll Satellite Station supports cloud-based space communications, enabling NASA’s Near Space Network to support scientific missions via a wireless cloud network.Kongsberg Satellite Services For NASA, its commercial partners, and other global space agencies, this expansion means more reliable space communications with fewer expenses. 
      Troll’s successful integration into the Near Space Network is a case study for future private and government partnerships. As SPHEREx measures the collective glow of over 450 million galaxies as far as 10 billion light-years away, SCaN continues to innovate how its discoveries safely return to Earth. 
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory in Southern California for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Funding and oversight for DAPHNE+ and the Near Space Network come from the SCaN program office at NASA Headquarters and operate out of NASA’s Goddard Space Flight Center. The Troll Satellite Station is owned and operated by Kongsberg Satellite Services and located in Queen Maud Land, Antarctica. 
      About the Author
      Korine Powers
      Lead Writer and Communications StrategistKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, exploration activities, and more.
      Share
      Details
      Last Updated May 06, 2025 Related Terms
      Communicating and Navigating with Missions Commercial Space Space Communications & Navigation Program SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) View the full article
    • By NASA
      8 Min Read How to Contribute to Citizen Science with NASA
      A number of NASA projects use mobile phone apps to put satellite data into the palm of your hand, and allow intrepid citizen scientists to upload data. Credits:
      NASA A cell phone, a computer—and your curiosity—is all you need to become a NASA citizen scientist and contribute to projects about Earth, the solar system, and beyond.
      Science is built from small grains of sand, and you can contribute yours from any corner of the world.
      All you need is a cell phone or a computer with an internet connection to begin a scientific adventure. Can you imagine making a pioneering discovery in the cosmos? Want to help solve problems that could improve life on our planet? Or maybe you dream of helping solve an ancient mystery of the universe? All of this is possible through NASA’s Citizen Science program.
      NASA defines citizen science, or participatory science, as “science projects that rely on volunteers,” said Dr. Marc Kuchner, an astrophysicist and the Citizen Science Officer in the agency’s Science Mission Directorate in Washington, D.C.
      For decades, volunteers have been supporting NASA researchers in different fields and in a variety of ways, depending on the project. They help by taking measurements, sorting data from NASA missions, and deepening our understanding of the universe and our home planet. It all counts.
      “That’s science for you: It’s collaborative,” said Kuchner, who oversees the more than 30 citizen science projects NASA offers. “I connect the public and scientists to get more NASA science done.”
      NASA astrophysicist Marc Kuchner is a pioneer in participatory science and today serves as NASA’s Citizen Science program officer. In 2014, Kuchner created the Disk Detective project, which helps NASA scientists study how planets form. Kuchner has also been the principal investigator for some of the agency’s many citizen science projects, but today he oversees the portfolio and promotes volunteer participation around the world.
      Credit: David Friedlander A menu of projects for all tastes
      Citizen scientists can come from anywhere in the world—they do not have to be U.S. citizens or residents. Volunteers help NASA look for planets in other solar systems, called exoplanets; sort clouds in Earth’s sky; observe solar eclipses; or detect comets and asteroids. Some of those space rocks are even named after the volunteers who helped find them.
      Mass participation is key in initiatives that require as many human eyes as possible. “There are science projects that you can’t do without the help of a big team,” Kuchner said. For example, projects that need large datasets from space telescopes—or “things that are physically big and you need people in different places looking from different angles,” he said.
      One example is Aurorasaurus, which invites people to observe and classify northern and southern auroras. “We try to study them with satellites, but it really helps to have people on the ground taking photos from different places at different times,” he explained.
      “Part of the way we serve our country and humankind is by sharing not just the pretty pictures from our satellites, but the entire experience of doing science,” Kuchner said.
      More than 3 million people have participated in the program. Kuchner believes that shows how much people want to be part of what he calls the “roller coaster” of science. “They want to go on that adventure with us, and we are thrilled to have them.”
      The dream of discovering
      “You can help scientists who are now at NASA and other organizations around the world to discover interesting things,” said Faber Burgos, a citizen scientist and science communicator from Colombia. “Truth be told, I’ve always dreamed of making history.”
      Colombian citizen scientist Faber Burgos studied Modern Languages at the Colombian School of Industrial Careers and has a university degree in Classical Archaeology. Today, he is dedicated to disseminating science content through his social media accounts, focusing on children. In 2020, he and his team launched a balloon probe into the stratosphere with a camera that captured the curvature of the Earth, with the aim of demonstrating that the Earth is round. The video of that feat exceeds 97 million views on his Facebook account, earning him a Guinness World Record.
      Credit: Courtesy of Faber Burgos Burgos has been involved in two projects for the past four years: the International Astronomical Search Collaboration (IASC), which searches the sky for potentially dangerous asteroids, and Backyard Worlds: Planet 9. This project uses data from NASA’s now-completed Wide-field Infrared Survey Explorer (WISE) and its follow-up mission, NEOWISE, to search for brown dwarfs and a hypothetical ninth planet.
      “There are really amazing participants in this project,” said Kuchner, who helped launch it in 2015. NASA’s WISE and NEOWISE missions detected about 2 billion sources in the sky. “So, the question is: Among those many sources, are any of them new unknowns?” he said.
      The project has already found more than 4,000 brown dwarfs. These are Jupiter-sized objects—balls of gas that are too big to be planets, but too small to be stars. Volunteers have even helped discover a new type of brown dwarf.
      Participants in the project are also hopeful they’ll find a hypothetical ninth planet, possibly Neptune-sized, in an orbit far beyond Pluto.
      The Backyard Worlds: Planet 9 citizen science project asks volunteers to help search for new objects at the edge of our solar system. The assignment is to review images from NASA’s past WISE and NEOWISE missions in search of two types of astronomical objects: brown dwarfs(balls of gas the same size as  Jupiter that have too little mass to be considered stars) and low-mass stars. Or, even, the hypothetical ninth planet of our Sun, known as Planet nine, or Planet X. The image shows an artist’s rendering of such a hypothetical world orbiting far from the Sun.
      Credit: Caltech/R. Hurt (IPAC) Caltech/R. Hurt (IPAC) Burgos explained that analyzing the images is easy. “If it’s a moving object, it’s obviously going to be something of interest,” he said. “Usually, when you see these images, everything is still. But if there’s an object moving, you have to keep an eye on it.”
      Once a citizen scientist marks the object across the full image sequence, they send the information to NASA scientists to evaluate.
      “As a citizen scientist, I’m happy to do my bit and, hopefully, one day discover something very interesting,” he said. “That’s the beauty of NASA—it invites everyone to be a scientist. Here, it doesn’t matter what you are, but your desire to learn.”
      The first step
      To become a NASA citizen scientist, start by visiting the program’s website. There you’ll find a complete list of available projects with links to their respective sites. Some are available in Spanish and other languages. Many projects are also hosted on the Zooniverse platform, which has been available since 2006.
      “Another cool way to get involved is to come to one of our live events,” said Kuchner. These are virtual events open to the public, where NASA scientists present their projects and invite people to participate. “Pick a project you like—and if it’s not fun, pick a different one,” he advised. “There are wonderful relationships to be had if you reach out to scientists and other participants.”
      Another way for people to get involved in citizen science is to participate in the annual NASA International Space Apps Challenge, the largest global hackathon. This two-day event creates innovation through international collaboration, providing an opportunity for participants to use NASA’s free and open data and agency partners’ space-based data to tackle real-world problems on Earth and in space. The next NASA International Space Apps Challenge will be October 4-5, 2025.
      Credit: NASA Age is not the limit
      People of all ages can be citizen scientists. Some projects are kid-friendly, such as Nemo-Net, an iPad game that invites participants to color coral reefs to help sort them. “I’d like to encourage young people to start there—or try a project with one of the older people in their life,” Kuchner said.
      Citizen science can also take place in classrooms. In the Growing Beyond Earth project, teachers and students run experiments on how to grow plants in space for future missions. The IASC project also works with high schools to help students detect asteroids.
      A student waters small plants inside a Growing Beyond Earth citizen science project grow box.
      Credit: NASA Projects by the community, for the community
      GLOBE Observer is another initiative with an international network of teachers and students. The platform offers a range of projects—many in Spanish—that invite people to collect data using their cell phones.
      One of the most popular is the GLOBE Mosquito Habitat Mapper, which tracks the migration and spread of mosquitoes that carry diseases. “It’s a way to help save lives—tracking the vectors that transmit malaria and Zika, among others,” Kuchner said.
      Other GLOBE projects explore everything from ground cover to cloud types. Some use astronomical phenomena visible to everyone. For example, during the 2024 total solar eclipse, participants measured air temperature using their phones and shared that data with NASA scientists.
      The full experience of doing science
      No prior studies are needed, but many volunteers go on to collaborate on—or even lead—scientific research. More than 500 NASA citizen scientists have co-authored scientific publications.
      One of them is Hugo Durantini Luca, from Córdoba, Argentina, who has participated in 17 published articles, with more on the way. For years, he explored various science projects, looking for one where he could contribute more actively.
      Durantini Luca participated in one of NASA’s first citizen science projects, launched in 2006: Stardust at home. Still ongoing, this project invites volunteers to participate in the search for evidence of interstellar dust on the aerogel and aluminum foil collectors returned by NASA’s Stardust mission, using an online virtual microscope.
      Credit: NASA He participated in NASA’s first citizen science project, Stardust@home, which invites users to search for interstellar dust particles in collectors from the Stardust mission, using a virtual microscope.
      In 2014, he discovered Disk Detective, a project that searches for disks around stars, where planets may form. By looking at images from the WISE and NEOWISE missions, participants can help understand how worlds are born and how solar systems evolve.
      “And, incidentally, if we find planets or some sign of life, all the better,” said Durantini Luca.
      Although that remains a dream, they have made other discoveries—like a new kind of stellar disk called the “Peter Pan Disk,” which appears young even though the star it surrounds is not.
      Durantini Luca participated in one of NASA’s first citizen science projects, launched in 2006: Stardust at home. Still ongoing, this project invites volunteers to participate in the search for evidence of interstellar dust on the aerogel and aluminum foil collectors returned by NASA’s Stardust mission, using an online virtual microscope.
      Credit: NASA Science in person
      In 2016, Durantini Luca got the chance to support Disk Detective with his own observations from the southern hemisphere. He traveled to El Leoncito Astronomical Complex (CASLEO), an observatory in San Juan, Argentina. There, he learned to use a spectrograph—an instrument that breaks down starlight to analyze its composition.
      He treasures that experience. “Curiously, it was the first time in my life I used a telescope,” he said.
      In 2016, citizen scientist Hugo Durantini Luca traveled for 18 hours to the El Leoncito Astronomical Complex (CASLEO), at the foot of the Andes Mountains. From there, he made observations of a candidate star of the Disk Detective project.
      Credit: Luciano García While in-person opportunities are rare, both virtual and physical events help build community. Citizen scientists stay in touch weekly through various channels.
      “Several of us are friends already—after so many years of bad jokes on calls,” said Durantini Luca.
      “People send me pictures of how they met,” said Kuchner. He said the program has even changed how he does science. “It’s changed my life,” he said. “Science is already cool—and this makes it even cooler.”
      About the Author
      NASA Science Editorial Team

      Share








      Details
      Last Updated Apr 29, 2025 Related Terms
      Citizen Science Earth Science Get Involved The Solar System The Universe Explore More
      3 min read Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!


      Article


      8 hours ago
      6 min read Where Does Gold Come From? NASA Data Has Clues


      Article


      9 hours ago
      2 min read Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      On April 16, 2025, the Earth Science Division at NASA’s Ames Research Center in Silicon Valley held an Earth Science Showcase to share its work with the center and their families. As part of this event, kids were invited to share something they like about the Earth. These are their masterpieces.

      Sora U. Age 9. “Wildlife”

      Sora U. Age 9. “Wildlife” Wesley P. Age 2.5. “Pale Blue”

      Wesley P. Age 2.5. “Pale Blue” Kira U. Age 5. “Hawaii”

      Kira U. Age 5. “Hawaii” Anonymous. “eARTh”

      Anonymous. “eARTh” Brooks P. Age 8mo. “Squiggles”

      Brooks P. Age 8mo. “Squiggles” About the Author
      Milan Loiacono
      Science Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.
      Share
      Details
      Last Updated Apr 25, 2025 Related Terms
      Earth Science Ames Research Center Ames Research Center's Science Directorate Earth Science Division Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Curiosity rover appears as a dark speck in this contrast-enhanced view captured on Feb. 28, 2025, by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter. Trailing Curiosity are the rover’s tracks, which can linger on the Martian surface for months before being erased by the wind. NASA/JPL-Caltech/University of Arizona The image marks what may be the first time one of the agency’s Mars orbiters has captured the rover driving.
      NASA’s Curiosity Mars rover has never been camera shy, having been seen in selfies and images taken from space. But on Feb. 28 — the 4,466th Martian day, or sol, of the mission — Curiosity was captured in what is believed to be the first orbital image of the rover mid-drive across the Red Planet.
      Taken by the HiRISE (High-Resolution Imaging Science Experiment) camera aboard NASA’s Mars Reconnaissance Orbiter, the image shows Curiosity as a dark speck at the front of a long trail of rover tracks. Likely to last for months before being erased by wind, the tracks span about 1,050 feet (320 meters). They represent roughly 11 drives starting on Feb. 2 as Curiosity trucked along at a top speed of 0.1 mph (0.16 kph) from Gediz Vallis channel on the journey to its next science stop: a region with potential boxwork formations, possibly made by groundwater billions of years ago.
      How quickly the rover reaches the area depends on a number of factors, including how its software navigates the surface and how challenging the terrain is to climb. Engineers at NASA’s Jet Propulsion Laboratory in Southern California, which leads Curiosity’s mission, work with scientists to plan each day’s trek.
      “By comparing the time HiRISE took the image to the rover’s commands for the day, we can see it was nearly done with a 69-foot drive,” said Doug Ellison, Curiosity’s planning team chief at JPL.
      Designed to ensure the best spatial resolution, HiRISE takes an image with the majority of the scene in black and white and a strip of color down the middle. While the camera has captured Curiosity in color before, this time the rover happened to fall within the black-and-white part of the image.
      In the new image, Curiosity’s tracks lead to the base of a steep slope. The rover has since ascended that slope since then, and it is expected to reach its new science location within a month or so.
      More About Curiosity and MRO
      NASA’s Curiosity Mars rover was built at JPL, which is managed for the agency by Caltech in Pasadena, California. JPL manages both the Curiosity and Mars Reconnaissance Orbiter missions on behalf of NASA’s Science Mission Directorate in Washington as part of the agency’s Mars Exploration Program portfolio. The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems in Boulder, Colorado.
      For more about the missions, visit:
      science.nasa.gov/mission/msl-curiosity
      science.nasa.gov/mission/mars-reconnaissance-orbiter
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-059
      Share
      Details
      Last Updated Apr 24, 2025 Related Terms
      Mars Science Laboratory (MSL) Curiosity (Rover) Mars Mars Reconnaissance Orbiter (MRO) Explore More
      5 min read Eye on Infinity: NASA Celebrates Hubble’s 35th Year in Orbit
      In celebration of the Hubble Space Telescope’s 35 years in Earth orbit, NASA is releasing…
      Article 1 day ago 3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
      Article 7 days ago 6 min read NASA’s Perseverance Mars Rover Studies Trove of Rocks on Crater Rim
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In our modern wireless world, almost all radio frequency (RF) spectrum bands are shared among multiple users. In some domains, similar users technically coordinate to avoid interference. The spectrum management team, part of NASA’s SCaN (Space Communications and Navigation) Program, represents the collaborative efforts across U.S. agencies and the international community to protect and enable NASA’s current and future spectrum-dependent science, exploration, and innovation.     
      Coordination with Other Spectrum Stakeholders
      NASA works to promote the collaborative use of the RF spectrum around Earth, and beyond. For example, NASA coordinates closely with other U.S. government agencies, international civil space agencies, and the private sector to ensure missions that overlap in time, location, and frequency do not cause or receive interference that could jeopardize their success. The spectrum management team protects NASA’s various uses of the spectrum by collaborating with U.S. and international spectrum users on technical matters that inform regulatory discussions.  
      As a founding member of the Space Frequency Coordination Group, NASA works with members of governmental space- and science-focused agencies from more than 35 countries. The Space Frequency Coordination Group annual meetings provide a forum for multilateral discussion and consideration of international spectrum regulatory issues related to Earth, lunar, and deep space research and exploration. The Space Frequency Coordination Group also provides a forum for the exchange of technical information to facilitate coordination for specific missions and enable efficient use of limited spectrum resources in space. 
      Domestic and International Spectrum Regulators 
      Creating and maintaining the global spectrum regulations that govern spectrum sharing requires collaboration and negotiation among all its diverse users. The International Telecommunication Union manages the global spectrum regulatory framework to optimize the increasing, diverse uses of the RF spectrum and reduce the likelihood of RF systems experiencing interference. U.S. regulators at the National Telecommunications and Information Administration and the Federal Communications Commission are responsible for developing and administering domestic spectrum regulations.  Organizations across the world cooperatively plan and regulate spectrum use.  The spectrum management team participates on behalf of NASA at both national and international levels to ensure that the U.S. domestic and international spectrum regulatory framework supports and enables NASA’s current and future missions.  
      NASA collaborates with domestic and international spectrum stakeholders to provide technical expertise on space spectrum topics to ensure regulations continue to enable space exploration, science, and innovation.NASA Share
      Details
      Last Updated Apr 23, 2025 Related Terms
      General Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...