Jump to content

Recommended Posts

  • Publishers
Posted

Associate Director for Mission Planning, Earth Sciences, and environmental scientist Robert J. “Bob” Swap makes a difference by putting knowledge into action.

Name: Robert J. “Bob” Swap
Title: Associate Director for Mission Planning, Earth Sciences
Organization: Earth Science Division (Code 610)

Woman wearing a green jacket and man wearing a tan button down shirt with the Goddard logo stand on a runway in front of a plane.
Robert Swap (right) and Karen St. Germain, NASA Earth science director (left) joined NASA’s Student Airborne Research Program, an eight-week summer internship program for rising senior undergraduates during summer 2023.
Photo courtesy of Robert Swap

What do you do and what is most interesting about your role here at Goddard?

I work with our personnel to come up with the most viable mission concepts and put together the best teams to work on these concepts. I love working across the division, and with the center and the broader community, to engage with diverse competent teams and realize their potential in address pressing challenges in the earth sciences.

Why did you become an Earth scientist?

In the mid to late ’70s, the environment became a growing concern. I read all the Golden Guides in the elementary school library to learn about different creatures. I grew up exploring and discovering the surrounding woods, fields, and creeks, both on my own and through scouting and became drawn to nature, its connectedness, and its complexity. The time I spent fishing with my father, a military officer who also worked with meteorology, and my brother helped cement that love. I guess you could say that I became “hooked.”

What is your educational background?

In 1987, I got a B.A. in environmental science from the University of Virginia. While at UVA, I was a walk-on football player, an offensive lineman on UVA’s first ever post-season bowl team. This furthered my understanding of teamwork, how to work with people who were much more skilled than I was, and how to coach. I received master’s and Ph.D. degrees in environmental science from UVA in 1990 and 1996, respectively.

As an undergraduate in environmental sciences, I learned about global biochemical cycling — meaning how carbon and nitrogen move through the living and nonliving systems — while working on research teams in the Chesapeake Bay, the Blue Ridge Mountains and the Amazon Basin.

Before graduating I had the good fortune to participate in the NASA Amazon Boundary Layer Experiment (ABLE-2B) in the central Amazon, which I used to kick off my graduate studies. I then focused on southern African aerosol emissions, transports and depositions for my doctoral studies that ultimately led to a university research fellow postdoc at the University of the Witwatersrand in Johannesburg, South Africa.

What are some of your career highlights?

It has been a crazy journey!

While helping put up meteorological towers in the Amazon deep jungle, we would encounter massive squall lines. These storms were so loud as they rained down on the deep forest that you could not hear someone 10 feet away. One of the neatest things that I observed was that after the storms passed, we would see a fine red dust settling on top of our fleet of white Volkswagen rental vehicles in the middle of the rainforest.

That observation piqued my interest and led to a paper I wrote about Saharan dust being transported to the Amazon basin and its potential implications for the Amazon, especially regarding nutrient losses from the system. Our initial work suggested there was not enough input from Northern Africa to support the system’s nutrient losses. That caused us to start looking to Sub-Saharan Africa as a potential source of these nutritive species.

I finished my master’s during the first Persian Gulf War, and finding a job was challenging. During that phase I diversified my income stream by delivering newspapers and pizzas and also bouncing at a local nightspot so that I could focus on writing papers and proposals related to my research. One of my successes was the winning of a joint National Science Foundation proposal that funded my doctoral research to go to Namibia and examine sources of aerosol and trace gases as part of the larger NASA TRACE-Southern African Atmosphere Fire Research Initiative – 92 (SAFARI-92). We were based at Okaukuejo Rest Camp inside of Namibia’s Etosha National Park for the better part of two months. We characterized conservative chemical tracers of aerosols, their sources and long-range transport from biomass burning regions, which proved, in part, that Central Southern Africa was providing mineral and biomass burning emissions containing biogeochemically important species to far removed, downwind ecosystems thousands of kilometers away.  

When I returned to Africa as a postdoctoral fellow, I  was able to experience other countries and cultures including Lesotho, Mozambique, and Zambia. In 1997, NASA’s AERONET project was also expanding into Africa and I helped Brent Holben and his team deploy instruments throughout Africa in preparation for vicarious validation of instrumentation aboard NASA’s Terra satellite platform.

I returned to UVA as a research scientist to work for Chris Justice and his EOS MODIS/Terra validation team. I used this field experience and the international networks I developed, which contributed to my assuming the role of U.S. principal investigator for NASA’s Southern African Regional Science Initiative. Known as SAFARI 2000, it was an effort that involved 250 scientists from 16 different countries and lasted more than three years. When it ended, I became a research professor and began teaching environmental science and mentoring UVA students on international engagement projects.

Around 2000, I created a regional knowledge network called Eastern/Southern Africa Virginia Network and Association (ESAVANA) that leveraged the formal and informal structures and networks that SAFARI 2000 established. I used my team building and science diplomacy skills to pull together different regional university partners, who each had unique pieces for unlocking the larger puzzle of how southern Africa acted as a regional coupled human-natural system. Each partner had something important to contribute while the larger potential was only possible by leveraging their respective strengths together as a team.

I traveled extensively during this time and was supported in 2001 partially by a Fulbright Senior Specialist Award which allowed me to spend time at the University of Eduardo Mondlane in Maputo Mozambique to help them with hydrology ecosystem issues in the wake of massive floods. We kept the network alive by creating summer study abroad, service learning and intersession January educational programs that drew upon colleagues and their expertise from around the world that attracted new people, energy, and resources to ESAVANA. All of these efforts contributed to a “community of practice” focused on learning about the ethics and protocols of international research. The respectful exchange of committed people and their energies and ideas was key to the effort’s success. I further amplified the impact of this work by contributing my lived and learned experiences to the development of the first ever global development studies major at UVA.

In 2004, I had a bad car accident and as a result have battled back and hip issues ever since. After falling off the research funding treadmill, I had to reconfigure myself in the teaching and program consultant sector. I grew more into a teaching role and was recognized for it by UVA’s Z-Society 2008 Professor of the Year, the Carnegie Foundation for the Advancement of Teaching’s Virginia’s 2012 Professor of the Year, as well as my 2014 induction into UVA’s Academy of Teaching — all while technically a research professor. I was also heavily involved for almost a decade with the American Association for the Advancement of Science and its Center for Science Diplomacy and tasks related to activities such as reviewing the Inter-American Institute for Global Change Research and teaching science diplomacy in short courses for the World Academy of Sciences for the Advancement of Science in Developing Countries located in Trieste, Italy, and the Academy of Science of South Africa.

I worked in the Earth Sciences Division at NASA Headquarters from 2014 to early 2017 as a rotating program support officer as part of the Intergovernmental Personnel Act (IPA), where I supported the atmospheric composition focus area. One of my responsibilities involved serving as a United States Embassy science fellow in the summer of 2015, where I went to Namibia to support one of our Earth Venture Suborbital field campaigns. I came to Goddard in April 2017 to help revector their nascent global network of ground-based, hyperspectral ultraviolet and visible instruments known as the Pandora.

What is your next big project?

I am currently working with the NASA Goddard Earth Science Division front office to craft a vision for the next 20 years, which involves the alignment of people around a process to achieve a desired product. With the field of Earth System Science changing so rapidly, we need to position ourselves within this ever evolving “new space” environment of multi-sectoral partners — governmental, commercial, not-for-profit, and academic — from the U.S. and beyond to study the Earth system. This involves working with other governmental agencies, universities and industrial partners to chart a way forward. We will have a lot of new players. We will be working with partners we never imagined.

We need people who know how to work across these different sectors. One such attempt to “grow our own timber” involves my development of an experimental version of the first NASA Student Airborne Research Program East Coast Edition (SARP and SARP-East), where student participants from a diversity of institutions of higher learning can see the power and promise of what NASA does, how we work together on big projects, and hopefully be inspired to take on the challenges of the future. In other words, I am pushing an exposure to field-based, Earth system science down earlier into their careers to expose them to what NASA does in an integrated fashion.

What assets do you bring to the Earth Science Division front office?

In 2020, I came to the Earth science front office to help lead the division. I make myself available across the division to help inspire, collect, suggest, and coach our rank and file into producing really cool mission concept ideas.

Part of why the front office wanted me is because I use the skills of relationship building, community building, and science diplomacy to make things happen, to create joint ventures.  Having had to support myself for over 20 years on soft money, I learned to become an entrepreneur of sorts — to be scientifically and socially creative — and I was forced to look inward and take an asset-based approach. I look at all the forms of capital I have at hand and use those to make the best of what I have got. In Appalachia, there is an expression: use everything but the squeal from the pig.

Lastly, I bring a quick wit with a good dose of self-deprecating humor that helps me connect with people.

How do you use science diplomacy to make things happen?

Two of the things that bind people together about science are the process of inquiry and utilizing the scientific method, both of which are universally accepted. As such, they allow us to transcend national and cultural divides.

Science diplomacy works best when you start with this common foundation. Starting with this premise in collaborative science allows for conversations to take place focusing on what everyone has in common. You can have difficult conversations and respectful confrontations about larger issues.

Scientists can then talk and build bridges in unique ways. We did this with SAFARI 2000 while working in a region that had seen two major wars and the system of Apartheid within the previous decade. We worked across borders of people who were previously at odds. We did that by looking at something apart from national identity, which was Southern Africa. We focused on how a large-scale system functions and how to make something that incorporates 10 different countries operate as a unit. We wanted to conduct studies showing how the region operated as a functional unit while dealing with transboundary issues. It took a lot of community and trust, and we began with the science community.

What drives you?

I want to put knowledge into action to make a difference. I realize it is not about me, it is about “we.” That is why I came to NASA, to make a difference. There is no other agency in the world where we can harness such a unique and capable group of people.

What do you do for fun?

I enjoy watching sports. I still enjoy hiking, fishing, and tubing down the river. My wife and I like long walks through natural settings with our rescues, Lady, our black-and-tan coonhound, and Duchess, our long-haired German Shepherd Dog. They are our living hot water bottles in the winter.

My wife and I also like to cook together.

Who would you like to thank?

Without a doubt, it starts with my wife, family, and children whom without none of what I have accomplished would have been possible. I have had the good fortune to be able to bring them along on some of my international work, including to Africa.

I am also very grateful to all those people during my school years who stepped in and who did not judge me initially by my less than stellar grades. They gave me the chance to become who I am today.

Who inspires you?

There is an old television show that I really liked called “Connections,” by James Burke. He would start with a topic, go through the history, and show how one action led to another action with unforeseen consequences. He would take something modern like plastics and link it back to Viking times. Extending that affinity for connections, the Resilience Alliance out of Sweden also influences me with their commitment to showing connections and cycles.

My mentors at UVA were always open to serving as a sounding board. They treated me as a colleague, not a student, as a member of the guild even though I was still an apprentice. That left an indelible impression upon me and I always try to do the same. My doctoral mentor Mike Garstang said that he already had a job and that this job was to let me stand on his shoulders to allow me to get to the next level, which is my model.

Another person who was very formative during my early professional career was Jerry Melillo who showed me what it was like to be an effective programmatic mentor. I worked with him as his chief staffer of an external review of the IAI and learned a lot by watching how he ran that activity program.

With respect to NASA, a number of people come to mind: Michael King, Chris Justice, and Tim Suttles, as well as my South African Co-PI, Harold Annegarn, all of whom, at one time or another, took me under their respective wings and mentored me through the whole SAFARI 2000 process. From each of their different perspectives, they taught me how NASA works, how to engage, how to implement a program, and how to navigate office politics. And my sister and our conversations about leadership and what it means to be a servant leader. To be honest, there are scores more individuals who have contributed to my development that I don’t have the space to mention here.

What are some of your guiding principles?

Never lose the wonder — stay curious. “We” not “me.” Seeking to understand before being understood. We all stand on somebody’s shoulders. Humility rather than hubris. Respect. Be the change you wish to see.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Nov 19, 2024
Editor
Madison Olson
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.
      The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 
      Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.
      The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.
      NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 17
      5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.
      6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.
      8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.
      All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.
      Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
      Learn more about this NASA commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Northrop Grumman Commercial Resupply View the full article
    • By NASA
      Ames Science Directorate’s Stars of the Month: September 2025

      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Taejin Park, Lydia Schweitzer, and Rachel Morgan. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
      Earth Science Star: Taejin Park
      Taejin Park is a NASA Earth eXchange (NEX) research scientist within the Biospheric Science Branch, for the Bay Area Environmental Research Institute (BAERI). As the Project Scientist for the Wildfire, Ecosystem Resilience, & Risk Assessment (WERK) project, he has exhibited exemplary leadership and teamwork leading to this multi-year study with the California Natural Resources Agency (CNRA) and California Air Resources Board (CARB) to develop tracking tools of statewide ecological condition, disturbance, and recovery efforts related to wildfires.
      Space Science and Astrobiology Star: Lydia Schweitzer
      Lydia Schweitzer is a research scientist within the Planetary Systems Branch for the Bay Area Environmental Research Institute (BAERI) as a member of the Neutron Spectrometer System (NSS) team with broad contributions in instrumentation, robotic rovers and lunar exploration. Lydia is recognized for her leadership on a collaborative project to design and build a complex interface unit that is crucial for NSS to communicate with the Japanese Space Agency’s Lunar Polar eXploration rover mission (LUPEX). In addition, she is recognized for her role as an instrument scientist for the Volatiles Investigating Polar Exploration Rover (VIPER) and MoonRanger missions.
      Space Science and Astrobiology Star: Rachel Morgan
      Rachel Morgan is an optical scientist in the Astrophysics Branch for the SETI Institute. As AstroPIC’s lead experimentalist and the driving force behind the recently commissioned photonic testbed at NASA Ames, this month she achieved a record 92 dB on-chip suppression on a single photonic-integrated chip (PIC) output channel. This advances critical coronagraph technology and is a significant milestone relevant to the Habitable Worlds Observatory.
      View the full article
    • By NASA
      Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam Announcements More Archives Conference Schedules Style Guide 21 min read
      Summary of the 11th ABoVE Science Team Meeting
      Introduction
      The NASA Arctic–Boreal Vulnerability Experiment (ABoVE) is a large-scale ecological study in the northern regions of North America (Alaska and western Canada) that was developed to understand environmental changes in the region and the implications of those changes for society. Funded primarily by the NASA Terrestrial Ecology Program, this 10-year campaign has included field, airborne, and satellite remote sensing research to address its overarching scientific question of how environmental change in the Arctic and boreal region of western North America will affect vulnerable ecosystems and society.
      ABoVE deployed in three phases: 1) ecosystem dynamics (2015–2018); 2) ecosystem services (2017–2022); and 3) analysis and synthesis (2023–present). Now in the last year of the third phase, the Science Team (ST) consists of 67 active NASA-funded projects with more than 1000 individuals participating. The ABoVE ST has met yearly to discuss the progress of individual teams, plan joint field work, and discuss synthesis activities. ABoVE was featured in a 2019 The Earth Observer article, titled “Summary of the 2019 ABoVE Science Team Meeting” [July–August 2019, Volume 31, Issue 4, pp. 19–22], as well as a 2022 The Earth Observer article, titled “Summary of the Eighth ABoVE Science Team Meeting” [September–October 2022, Volume 34, Issue 5, pp. 28–33].
      Meeting Overview
      The 11th – and final – ABoVE Science Team Meeting (ASTM11) was held May 12–15, 2025, with 96 registered in-person attendees meeting at the University of Alaska, Fairbanks (UAF) and 67 registered virtual attendees – see Photo 1. The meeting included presentations from Phase 3 projects and synthesis reports from thematic working groups (WGs). ABoVE partners, including collaborators [e.g., the Department of Energy’s Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic), Polar Knowledge Canada (POLAR), the Canadian Forest Service (CFS), and the Government of the Northwest Territories (GNWT)] and representatives from upcoming NASA campaigns focusing on the Arctic, shared updates on their activities. Additionally, the meeting featured sessions highlighting cross-project activities, e.g., ABoVE’s participation in regional fire workshops. The meeting also focused on collaborations with the Scotty Creek Research Station in Canada, the many types of science communication activities during ABoVE, and projects conducting collaborative research with community or regional partners.
      Photo 1.The 11th Arctic–Boreal Vulnerability Experiment Science Team (ABoVE) meeting group photo of in-person and virtual participants. Photo credit: Peter Griffith, Leane Kending, and David Stroud The meeting included additional team activities designed to encourage collaboration and understanding between team members. There were opportunities for multiple field trips for in-person attendees, including visits to the Alaska Satellite Facility (ASF) at the Geophysical Institute, the Permafrost Tunnel operated by the Cold Regions Research and Engineering Laboratory (CRREL), the Yankovich Road Fire Interpretive Trail, and the Arctic Research Open House at UAF – see ABove Field Trips section to learn more. The meeting offered early career researchers a chance to receive feedback on their posters and participate in an Early Career lunch event. The meeting even hosted an ABoVE bingo competition, which encouraged attendees to make new scientific and social connections – see Photo 2.
      Photo 2. Scott Goetz [University of Northern Arizona—ABoVE Science Team Lead] poses with ABoVE BINGO winner Wanwan Liang [University of Utah]. Photo credit: Wanwan Liang Meeting Opening
      The first day of the meeting began with a series of opening remarks from the ABoVE leadership team. Peter Griffith [NASA’s Goddard Space Flight Center (GSFC)/Science Systems and Applications, Inc. (SSAI)—Chief Scientist, Carbon Cycle and Ecosystems Office (CCEO)], Scott Goetz [Northern Arizona University (NAU)—ABoVE ST Lead], and Ryan Pavlick [NASA Headquarters (HQ)—ABoVE Program Manager] all noted the significance of this final meeting and discussed the major scientific advances of ABoVE made possible through the dedication of ST members, WG leads, planning committees, and contributors who have made ABoVE a success. Goetz reviewed the meeting goals and objectives:
      receive updates about currently funded projects; receive reports on Thematic WG advances with an emphasis on multiple WG and cross-phase synthesis activities; receive updates on research connections with partners and collaborators; discuss, reflect, and document the history of ABoVE, including major advances, lessons learned, and items to accomplish in the time remaining; and celebrate ABoVE success stories, with advice for potential future NASA large-scale coordinated campaigns. Working Group Presentations and Breakouts
      Throughout the first few days of the meeting, leads for the thematic working groups (WG) presented synthetic overviews of the research efforts of their group members, identified current gaps in planned or completed research, and discussed potential future work. Following these presentations, breakout groups convened to discuss future activities of the WGs. Short summaries of each presentation are available below. Together, these presentations demonstrate the highly interconnected nature of carbon cycles, hydrology, permafrost dynamics, and disturbance regimes in Arctic–boreal ecosystems. The presentations also showcase the substantial ongoing WG efforts to synthesize findings and identify critical knowledge gaps for future research priorities.
      Vegetation Dynamics Working Group
      WG Leads: Matthew Macander [Alaska Biological Research, Inc. (ABR)] and Paul Montesano [GSFC/ADNET Systems Inc.]
      The Vegetation Dynamics WG discussed new advances in understanding Arctic–boreal vegetation structure and function that have been made over the past 10 years through comprehensive biomass maps and multidecadal trend analyses. ABoVE research revealed a critical boreal forest biome shift with greening in nitrogen-rich northern forests and browning in drought-stressed southern forests. The group has identified key knowledge gaps in predicting post-fire vegetation recovery and detecting pervasive declines in vegetation resilience across southern boreal forests. The results suggest higher vulnerability to abrupt forest loss that could dampen the expected increase in carbon sequestration under future climate scenarios.
      Spectral Imaging Working Group
      WG Leads: Fred Huemmrich [GSFC/University of Maryland Baltimore County] and Peter Nelson [Laboratory of Ecological Spectroscopy (LECOSPEC)]
      Over the past year, the Spectral Imaging WG focused on the fundamental scale problem in Arctic ecology, which refers to the mismatch between observation scales and ecological process scales, which span spatial scales from leaf level to larger study areas and temporal scales from minutes to decades. The Airborne Visible/Infrared Imaging Spectrometer – Next Generation (AVIRIS-NG) and AVIRIS-3 datasets provide the first broad-area and high-spatial and spectral resolution coverage of high-latitude terrestrial ecosystems. The WG is now completing a scaling synthesis paper and preparing for the new era of data-rich spectral imaging with improved capabilities in data management, machine learning, and modeling applications for high-latitude research.
      Modeling Working Group
      WG Lead: Josh Fisher [Chapman University]
      The Modeling WG aims to reduce model uncertainties in simulations and projections in the Arctic–boreal region across all ABoVE ecosystem indicators. The WG had polled the ST to determine the variables most needed for their Earth system models and is now using the field, airborne, and satellite datasets to better constrain these models. This WG discussed the benefits to the modeling community of transforming the more than 100 ABoVE datasets into a common grid and projection format used by modelers.
      Carbon Dynamics Working Group
      WG Leads: Jonathan Wang [University of Utah] and Jennifer Watts [Woodwell Climate Research Center (WCRC)]
      The Carbon Dynamics WG has focused its recent work on three areas: decadal syntheses of carbon dioxide (CO2) fluxes from eddy covariance towers, machine learning approaches to upscaling wetland and lake methane (CH4) emissions, and carbon flux modeling across the Arctic–boreal zone. The research integrated atmospheric CO2 observations to improve carbon flux estimates and examined wildfire impacts on both carbon emissions and albedo changes. A significant component of the work involved comparing top-down versus bottom-up carbon flux models, with particular attention to permafrost and peatland regions.
      Hydrology-Permafrost-Wetlands Working Group
      WG Leads: Laura Bourgeau-Chavez [Michigan Technological University], David Butman [University of Washington], John Kimball [University of Montana], and Melissa Schwab [University of California, Irvine]
      The Hydrology–Permafrost–Wetlands WG focused on the processes controlling changes in permafrost distribution and properties and their impacts. There was discussion about the nature, causes, and consequences of hydrologic change (e.g. water storage, mobility, and distribution) and about ecosystem water, energy, and carbon cycle linkages. The presenters mentioned integration of ABoVE datasets with NASA satellite missions [e.g., NASA–Indian Space Research Organisation (ISRO) Synthetic Aperture Radar (NISAR) and Surface Water and Ocean Topography (SWOT) missions]. WG members discussed the connections between ABoVE research and several crosscutting initiatives, including two NASA Arctic coastlines efforts [e.g., Frontlines Of Rapidly Transforming Ecosystems Earth Venture Suborbital (FORTE EVS) campaign and NASA’s Arctic-COastal Land Ocean InteRactionS (COLORS)] and the WCRC’s Permafrost Pathways.
      Disturbance Working Group
      WG Leads: Dong Chen [University of Maryland, College Park] and Jinhyuk Kim [University of California, Irvine]
      The Disturbance WG leads presented their decade-long perspective on disturbance-related research in the ABoVE domain. The presentation incorporated artificial intelligence (AI)-generated summaries of ABoVE-affiliated research across multiple disturbance types, including boreal wildfires, tundra wildfires, and thermokarst/permafrost degradation processes. Chen and Kim acknowledged the extensive contributions from researchers and WG members while outlining future directions for disturbance research.
      Success Stories
      Four “Success Story” presentations and panels took place during ASTM11, which showcased efforts of ABoVE ST members and the leadership team to create and coordinate engagement efforts that spanned individual projects.
      Success Story 1: ABoVE Participation in Regional Fire Workshops
      A substantial portion of ABoVE research has focused on wildfire, and many members of the ST have participated in domestic and international wildfire efforts, connecting researchers with land managers across Alaska and Canada. Randi Jandt [UAF] discussed the Alaska Fire Science Consortium workshops (held in 2017 and 2022). Jenn Baltzer [Wilfred Laurier University (WLU), Canada] discussed Northwest Territories workshops (held in 2014 and 2025), both of which occurred in response to extreme fire seasons in the region. Laura Bourgeau-Chavez outlined ABoVE’s participation in all of these workshops. The workshops facilitated knowledge exchange and collaboration on critical wildfire management priorities, including fire risk assessment, real-time modeling, post-fire effects, and climate change impacts on fire regimes. Key features included small focus groups, field trips to command centers and fire-affected areas, and integration of Indigenous knowledge with new technologies to inform management practices and climate preparedness strategies.
      Success Story 2: Collaborations with Scotty Creek Research Station (SCRS)
      ASTM11 participants watched the film, “Scotty Creek Research Community – The Spirit of Collaboration,” about the SCRS, Canada’s first and only Indigenous-led research station. Following the film, station team members participated in a panel discussion. Ramona Pearson [Ramona Pearson Consulting, Canada], Maude Auclair [WLU], Mason Dominico [WLU], Michael McPhee [Sambaa K’e First Nation, Canada], and William “Bill” Quinton [WLU] discussed their decade-long collaboration with ABoVE. The partnership involved ABoVE collecting airborne hyperspectral, lidar, and radar imagery, while SCRS researchers provided field data for calibration and validation. In 2022, management of the station transitioned to Łı́ı́dlı̨ı̨ Kų́ę́ First Nation (LKFN, Canada), and ABoVE continued collaborating through knowledge exchange, including with early-career researchers and interns. When a 2022 fire destroyed the field station and surrounding area, ABoVE flew additional flights to capture airborne imagery observations to allow comparison of pre- and post-fire conditions.
      Success Story 3: Science Communication
      During the ABoVE field campaign, ST members and CCEO staff engaged in multiple strategies to communicate research results to the public. The activities included interactive engagement through airborne open houses and guest flights, ST member narratives in the “Notes from the Field” blog posts on the NASA Earth Observatory website, and professional multimedia production, including Earth Observatory content and award-winning videos. This multifaceted strategy demonstrates effective scientific communication through direct public engagement and high-quality, multimedia storytelling, making complex research accessible to diverse audiences.
      Success Story 4: Engagement Activities
      This session highlighted several examples of community engagement across the ABoVE domain. Gerald “J.J.” Frost [ABR] discussed synthesizing ecosystem responses and elder observations in western Alaska for his ABoVE project. In another example, ABoVE researchers from Michigan Tech Research Institute (MTRI) partnered with Ducks Unlimited Canada (DUC) and local organizations. Dana Redhuis [MTRI] and Rebecca Edwards [DUC] described their on-the-land camps that provide hands-on training for Northwest Territories youth in wetlands education and ecological monitoring. Kevin Turner [Brock University, Canada] showcased his work with members of the Vuntut Gwitchin First Nation in Old Crow Flats, Yukon, evaluating how climate and land cover change influence water dynamics and carbon balance. These activities demonstrate collaborative research that integrates Indigenous and Western knowledge approaches to address climate change impacts.
      ABoVE Phase 3 Project Presentations
      Project leads of the 20 NASA-funded ABoVE Phase 3 projects presented updates that were organized by scientific theme. The presentations spanned multiple days of the meeting. Table 1 below provides all the project titles, presenter names, and links to each project and presentation. Science results from four of the presentations are shown in Figures 1–4 below as indicated in the table.
      Table 1. An overview ofABoVE Phase 3 projects and presenters. The Project name includes the last name of the Principal Investigator, NASA funding program (TE for Terrestrial Ecology), the year of the NASA solicitation funding the research, and provides a hyperlink to the Project Profile. A hyperlink to each presentation is provided as either PowerPoint (PPT) file or PDF.
      Project   Carbon Presenter(s) Bloom (TE 2021): Using CO2, CH4 and land-surface constraints to resolve sign and magnitude of northern high latitude carbon-climate feedbacks [PDF] Eren Bilir [NASA/Jet Propulsion Laboratory (JPL)]; Principal Investigator (PI): Alexis (Anthony) Bloom [NASA/Jet Propulsion Laboratory (JPL)] Butman (TE 2021): Do changing terrestrial-aquatic interfaces in Arctic-boreal landscapes control the form, processing, and fluxes of carbon? [PPT] David Butman [University of Washington] – see Figure 1 Watts (TE 2021): Contributions of tundra and boreal systems to radiative forcing in North America and Russia under contemporary and future conditions [PPT] Jennifer Watts [Woodwell Climate Research Center] Miller-S (TE 2021): A synthesis and reconciliation of greenhouse gas flux estimates across the ABoVE domain [PDF] Scot Miller [Johns Hopkins University] Michalak (TE 2021): Quantifying climate sensitivities of photosynthesis and respiration in Arctic and boreal ecosystems from top-down observational constraints [PDF] Wu Sun and Jiaming Wen [both Carnegie Institution for Science, CI]; PI: Anna Michalak, [Carnegie Institution for Science] Fire Presenter(s) Bourgeau-Chavez (TE 2021): Integrating remote sensing and modeling to better understand the vulnerability of boreal-taiga ecosystems to wildfire [PPT] Laura Bourgeau-Chavez [Michigan Technological University (MTU)] Walker (TE 2021): Drivers and Impacts of Reburning in boreal forest Ecosystems (DIRE) [PDF] Jeremy Forsythe [Northern Arizona University (NAU)]; PI: Xanthe Walker [NAU] Wang (TE 2021): Quantifying disturbance and global change impacts on multi-decadal trends in aboveground biomass and land cover across Arctic-boreal North America [PPT] Jonathan Wang [University of Utah]– see Figure 2  Wildlife Presenter(s) Boelman (TE 2021): The future of the Forest-Tundra Ecotone: A synthesis that adds interactions among snow, vegetation, and wildlife to the equation [PPT] Natalie Boelman [Lamont-Doherty Earth Observatory, Columbia University] French (TE 2021): Informing wetland policy and management for waterfowl habitat and other ecosystem services using multi-frequency synthetic aperture radar [PPT] Nancy French [MTU] – see Figure 3 Hydrology / Permafrost Presenter(s) Du (TE 2021): High resolution mapping of surface soil freeze thaw status and active layer thickness for improving the understanding of permafrost dynamics and vulnerability [PPT] Jinyang Du [University of Montana] Miller (TE 2021): Enhanced methane emissions in transitional permafrost environments: An ABoVE phase 3 synthesis investigation [PPT] Charles “Chip” Miller [NASA/JPL] Tape (TE 2021): Characterizing a widespread disturbance regime in the ABoVE domain: Beaver engineering [PPT] Kenneth Tape [University of Alaska, Fairbanks] Zhuang (TE 2021): Role of linked hydrological, permafrost, ground ice, and land cover changes in regional carbon balance across boreal and Arctic landscapes [PDF] Qianlai Zhuang [Purdue University]  Vegetation Structure Presenter(s) Duncanson (TE 2021): Mapping boreal forest biomass recovery rates across gradients of vegetation structure and environmental change [PPT] Paul Montesano [GSFC/ADNET Systems Inc]; PI: Laura Duncanson [University of Maryland]—see Figure 4 Lara (TE 2021): ABoVE-Ground characterization of plant species succession in retrogressive thaw slumps using imaging spectroscopy [PPT] Mark Lara [University of Illinois, Urbana-Champaign]  Vegetation Dynamics  Presenter(s) Frost (TE 2021): Towards a warmer, less frozen future Arctic: Synthesis of drivers, ecosystem responses, and elder observations along bioclimatic gradients in western Alaska [PPT] Gerald “J.J.” Frost [ABR] Goetz (TE 2021): Mapping and modeling attributes of an Arctic-boreal biome shift: Phase-3 applications within the ABoVE domain [PPT] Scott Goetz [NAU] Liu (TE 2021): Characterizing Arctic-boreal vegetation resilience under climate change and disturbances [PPT] Yanlan Liu [The Ohio State University] Townsend (TE 2021): Functional diversity as a driver of gross primary productivity variation across the ABoVE domain [PPT] Philip Townsend [University of Wisconsin] Determining Aboveground Biomass Density Using ICESat-2 Data and Modeling
      Figure 1. Despite their relatively small coverage, surface water extent across boreal and arctic lowlands significantly impacts landscape-scale estimates of carbon emissions. The red points on the map in the figure indicates locations of available lake chemistry data derived from ABoVE-supported research, from collaborators, and from a preliminary literature search. Figure credit. David Butman Figure 2. The Arctic-boreal carbon cycle is inextricably linked to vegetation composition and demography, both of which are being altered by climate change, rising levels of atmospheric carbon dioxide, and climate-induced changes in disturbance regimes. The map in the figure shows above-ground biomass (AGB) change across Arctic-boreal North America (2022–1984) created using a machine learning model of AGB trained on from more than 45,000 field plots and 200,000 km2 of airborne lidar data. Figure credit:  Wanwan Liang Figure 3.  Wetlands provide many ecosystem services, including waterfowl habitat, carbon sequestration, and water quality. Northern wetlands Iin the ABovE study area) are threatened from both land use expansion and climate change disruptions, prompting the need for informed management strategies.  Copernicus Sentinel 1 synthetic aperture radar (SAR) data have been used to create this map of flooding (hydroperiod) in wetland areas around the Great Slave Lake in Canada  The color code on the map corresponds to the number of times the SAR imagery indicated a place was flooded (inundated). Such information is helpful for predicting within-season changes in wetland extent. Figure credit: Nancy French Figure 4. Advances have been made in mapping aboveground biomass density (AGBD). Shown here as an example is an AGBD map created using stata from the   ICESat-2 pan-Boreal 30-m (98-ft) tree height and biomass data product [left] and the ensemble mean of the standard deviation of AGBD, aggregated to modelling tiles [right]. Current research aims to expand these maps and understand regional vegetation changes.  Figure credit. Laura Duncanson/data from ORNL DAAC ASTM11 Poster Sessions
      ASTM11 featured 41 research posters across three sessions, organized by thematic area – see Table 3 and Photo 3. The Poster Session agenda details the range of topics that spanned airborne synthetic aperture radar (SAR) and satellite imagery to northern ecosystem fieldwork. Key research topics that emerged included CO2 and CH4 emissions from terrestrial and aquatic systems, ongoing permafrost thaw, fire impacts on carbon cycling, vegetation mapping and biomass estimation, and the impacts of wildlife on the landscape.
      Table 2. A breakdown of ASTM11 poster presentations by science theme.
      Poster Theme Poster Count Carbon Dynamics 5 Crosscutting, Modeling, or Other 6 Fire Disturbance 5 Permafrost, Hydrology, and Wetlands 13 Vegetation Dynamics and Distribution 7 Vegetation Structure and Function 4 Wildlife and Ecosystem Services 1 Photo 3. Poster presentations and sessions during ASTM11 offered opportunities for presenters to share their latest research findings with meeting participants. Photo credit: Elizabeth Hoy ABoVE Field Trips
      ASTM11 offered multiple field trip options across the Fairbanks region of Alaska. The fieldtrips provided ST members an opportunity to interact with the research community – see Photo 4.
      Trip to Alaska Satellite Facility (ASF) and Geophysical Institute
      ASF is a data archive for many SAR datasets from a variety of sensors and has multiple ground station facilities. During the tour, participants visited the ASF operations room and ASF rooftop antenna. The Geophysical Institute tour also featured the Alaska Earthquake Center, Wilson Alaska Technical Center, and Alaska Center for Unmanned Aircraft Systems Integration.
      Trip to Cold Regions Research and Engineering Laboratory (CRREL) Permafrost Tunnel
      The U.S. Army Core of Engineers CRREL Permafrost Tunnel is located in Fox, AK – about 15 km (9 mi) north of Fairbanks. Over 300 m (984 ft) of tunnel have been excavated, exposing Pleistocene ice and carbon-rich yedoma permafrost that ranges in age from 18,000 to 43,000 years old. The tunnel exposes mammoth and bison bones and a variety of permafrost soils. Ongoing projects in the tunnel cover a range of topics, including engineering and geophysical work, Mars analog studies, and biogeochemistry and microbiology of permafrost soils.
      Wildfire Walk: Yankovich Road Fire Interpretive Trail
      On July 11, 2021, a wildfire burned 3.5 acres (14,164 m2) of UAF land. In 2024, the UAF Alaska Fire Science Consortium, Bureau of Land Management Alaska Fire Service, and local artist Klara Maisch collaborated with others to develop the Wildfire Walk at the site. The interpretive trail is an outdoor learning experience with interpretive wayside markers that describe the fire incident, the relationship between wildfire and the boreal forest, fire science and environmental change, and wildfire prevention – see Figure 1.
      UAF Arctic Research Open House
      The UAF Arctic Research Open House was an opportunity for ST members and the public to explore the wide range of research happening at UAF and meet other scientists. ABoVE hosted an information table at the event.
      Photo 4: Collage of images collected during a series of field trips, including [top] the Wildfire Walk along the Alaska Fire Science Consortium, [middle] the Permafrost Tunnel with Tom Douglas [Cold Regions Research and Engineering Laboratory], [bottom left] UAF Arctic Open House ABoVE Table with Margaret “Maggie” Wooton [NASA’s Goddard Space Flight Center (GSFC)/Science System and Applications, Inc. (GSFC/SSAI)], Elizabeth Hoy [GSFC/Global Science & Technology Inc.], and Qiang Zhou [GSFC/SSAI], talking with Logan Berner [Northern Arizona University], [bottom right] the Alaska Satellite Facility ground receiving antenna. Photo credit: Elizabeth Hoy Research Connections
      The success of ABoVE as a large-scale research study over the Arctic and boreal regions within and outside the United States depended on collaboration with multiple organizations. Many of the ABoVE collaborators were able to present at ASTM11.
      Andrew Applejohn [Polar Knowledge Canada (POLAR)] provided details about the scope, mandate, and facilities available through POLAR, a Canadian government agency that has partnered with the ABoVE ST for the duration of the campaign.
      Ryan Connon [Government of the Northwest Territories (GNWT)] discussed the decade-long collaboration between ABoVE and the GNWT, including knowledge sharing of wildlife collar data, field-data ground measurements, and remote sensing analyses.
      Gabrielle Gascon [Canadian Forest Service (CFS), Natural Resources Canada] explained the scope of Canada’s National Forest Inventory and the current CFS focus on wildfire and the CFS’s other areas of research related to the northern regions. Another presentation featured information about various vegetation mapping initiatives where Matthew Macander discussed an Alaska-based effort called AKVEG Map, a vegetation plot database, and Logan Berner [NAU] detailed a pan-Arctic plant aboveground biomass synthesis dataset.
      Brendan Rogers [WCRC] showcased research from Permafrost Pathways, designed to bring together permafrost-related science experts with local communities to inform Arctic policy and develop adaptation and mitigation strategies to address permafrost thaw. NGEE-Arctic is another U.S. government effort that partnered specifically with ABoVE for the duration of the two efforts, and Bob Bolton [Oak Ridge National Laboratory (ORNL)] provided updates on the project.
      Tomoko Tanabe [Japan’s National Institute of Polar Research (JNIPR)] gave a presentation about NIPR to better inform ABoVE scientists about other international Arctic efforts, including a new Japanese Arctic research initiative called the Arctic Challenge for Sustainability III (ArCS III), designed to address social issues related to environmental and social changes in the Arctic.
      Additional Presentations
      An additional presentation aimed to keep the ABoVE ST informed of future NASA Arctic research efforts. Kelsey Bisson [NASA HQ—Program Scientist for the Ocean Biology and Biogeochemistry Program] discussed NASA Arctic-COLORS and Maria Tzortziou [City University of New York/Columbia University, LDEO] discussed the FORTE EVS campaign. The proposed Arctic-COLORS field campaign would quantify the biogeochemical and ecological response of Arctic nearshore systems to rapid changes in terrestrial fluxes and ice conditions. The NASA FORTE EVS campaign will fill a critical gap in understanding Alaska’s northernmost ecosystems by investigating eroding coastlines, rivers, deltas, and estuaries that connect land and sea systems, using airborne platforms.
      Scott Goetz continued with a presentation on U.S. efforts to plan the International Polar Year, scheduled for 2032–2033. Ryan Pavlick provided details on the NISAR mission, which launched after the meeting on July 30, 2025, and discussed other possible future NASA missions.
      A Career Trajectory panel featured Jennifer Watts, Jonathan Wang, Brendan Rogers, and Xiaoran “Seamore” Zhu [Boston University]. The panelists discussed opportunities for researchers from different academic backgrounds and at different career stages, and they provided details about how ABoVE has impacted their careers. They also discussed how NASA campaigns offer opportunities for early career scientists to join a team of peers to grow their abilities throughout the duration of the decade-long research.
      Klara Maisch, a local artist, discussed her work creating science-informed artwork through interdisciplinary collaborations with scientists and other creators – see Figure 5. Maisch described the benefits of partnering with artists to share science with a broad audience and showcased artwork she has created.
      Figure 5. Lower Tanana Homelands – 2022 Yankovich Fire – Plot Painting [left], with original plot reference photograph [right]. Image Credit: Klara Maisch Overarching Presentations
      A series of presentations on the overall structure and outcomes of ABoVE were held during ASTM11. Charles “Chip” Miller [NASA/JPL—Deputy ABoVE ST Lead, ABoVE Airborne Lead] provided details about SAR, hyperspectral, and lidar airborne measurements collected between 2017 and 2024 for the ABoVE Airborne Campaign.
      ABoVE Logistics Office members Daniel Hodkinson [GSFC/SSAI], Sarah Dutton [GSFC/SSAI], and Leanne Kendig [GSFC/Global Science & Technology, Inc. (GST, Inc.)] discussed the many field teams and activities supported during ABoVE. Overall, more than 50 teams were trained in field safety topics, with more than 1,200 training certificates awarded. Elizabeth Hoy [NASA GSFC/GST, Inc.] and Debjani Singh [ORNL] discussed the more than 250 data products developed during the ABoVE program and how to access them through NASA Earthdata. Example visualizations of ABoVE data products can be found in Figure 6.
      Figure 6. ABoVE logo created with different data products from the campaign used to compose each letter.A: Active Layer Thickness from Remote Sensing Permafrost Model, Alaska, 2001-2015;. Tree (inside A): Normalized Difference Vegetation Index (NDVI) Trends across Alaska and Canada from Landsat, 1984-2012;. B: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014;; O: Wildfire Carbon Emissions and Burned Plot Characteristics, NWT, CA, 2014-2016;; V: AVHRR-Derived Forest Fire Burned Area-Hot Spots, Alaska and Canada, 1989-2000;; E: Lake Bathymetry Maps derived from Landsat and Random Forest Modeling, North Slope, AK; and Underline (under O): Plot lines from the ABoVE Planning Tool visualizer. Figure credit: Caitlin LaNeve The Collaborations and Engagement WG held a plenary discussion to highlight the many activities that ABoVE researchers have been involved in over the past decade. The discussion highlighted the need for individual projects and campaign leadership to work together to ensure participation and understanding of planned research at local and regional levels.
      A highlight of the meeting was the “Legacy of ABoVE” panel discussion moderated by Nancy French [MTU]. Panelists included Eric Kasischke [MTU], Scott Goetz, Chip Miller, Peter Griffith, Libby Larson [NASA GSFC/SSAI], and Elizabeth Hoy. Each panelist reflected on their journey to develop ABoVE, which included an initial scoping study developed more than 15 years ago. Members of the panel – all a part of the ABoVE leadership team – joined the campaign at different stages of their career. Each panelist arrived with different backgrounds, bringing their unique perspective to the group that helped to frame the overall campaign development. Following the panel, all ST members who have been a part of ABoVE since its start over a decade ago came to the front for a group photo – see Photo 5.
      Following the panel, the ABoVE ST leads presented their overall thoughts on the meeting and facilitated a discussion with all participants at the meeting. Participants noted the important scientific discoveries made during ABoVE and enjoyed the collegial atmosphere during ASTM11.
      Photo 5. A group photo of participants who have been with ABoVE since its inception: [left to right] Ryan Pavlick, Chip Miller, Elizabeth Hoy, Libby Larson, Peter Griffith, Fred Huemmrich, Nancy French, Scott Goetz, Laura Bourgeau-Chavez, Eric Kasischke, and Larry Hinzman. Photo credit: Peter Griffith Conclusion 
      Overall, ASTM11 brought together an interdisciplinary team for a final team meeting that showcased the many accomplishments made over the past decade. The group outlined current gaps and needs in Arctic and boreal research and discussed possibilities for future NASA terrestrial ecology campaigns. The synthesis science presentations at ASTM11 highlighted the advances ABoVE has made in understanding carbon and ecosystem dynamics in Arctic and boreal regions. It also highlighted the need for further study of cold season and subsurface processes. While this was the last meeting of this ST, research for some projects will continue into 2026, and more publications and data products are expected from ST members in the near term.
      Elizabeth Hoy
      NASA’s Goddard Space Flight Center/Global Science & Technology Inc. (GSFC/GST,Inc.)
      elizabeth.hoy@nasa.gov
      Libby Larson
      NASA’s Goddard Space Flight Center/Science System and Applications, Inc. (GSFC/SSAI)
      libby.larson@nasa.gov
      Annabelle Sokolowski
      NASA GSFC Office of STEM Engagement (OSTEM) Intern
      Caitlin LaNeve
      NASA GSFC Office of STEM Engagement (OSTEM) Intern
      Share








      Details
      Last Updated Sep 10, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      Science Launching on Northrop Grumman's 23rd Cargo Resupply Mission to the Space Station
    • By NASA
      Lydia Rodriguez is an office administrator in the Flight Operations Directorate’s Operations Division and Operations Tools and Procedures Branch at NASA’s Johnson Space Center in Houston. 
      Over nearly two decades, she has supported nine organizations, helping enable NASA’s missions and forming lasting relationships along the way. 
      Official portrait of Lydia Rodriguez. NASA/Devin Boldt “I’ve had the opportunity to meet many different people at NASA who have become like family,” Rodriguez said. “I enjoy the culture and building relationships with people from all walks of life. I have learned so much from each person I’ve met and worked alongside.” 
      Her path to NASA began in high school, when her parents encouraged her to apply for a part-time Office Education student position at Johnson. That early opportunity gave her a glimpse into the agency’s culture — one that would inspire her to stay. 
      Lydia Rodriguez in the Mission Control Center Viewing Room during the Expedition 72 plaque hanging ceremony at NASA’s Johnson Space Center in Houston. Rodriguez takes pride in the practical support she has provided to her colleagues. She spent years in the Engineering Travel Office, helping team members plan their travel around the world. In 2013, the team was honored with a Group Achievement Award. 
      “I am proud of being confident and able to help others with their bookings and questions,” Rodriguez said. 
      Her NASA career has also taught her important lessons. Change has been a constant since she joined the center in 2008, and she has learned to adapt. 
      One of the greatest challenges came after Hurricane Harvey in 2017, when her home was flooded. Rodriguez learned to ask for support and leaned on employee resources at Johnson. 
      “I’ve learned that I am a resilient individual who takes on new challenges often,” she said. “What has helped me overcome obstacles is focusing on the mission and showing compassion toward people. We are all here for a reason and a purpose, and together we can accomplish greater things.” 
      Lydia Rodriguez skydiving for the second time in Houston. To the Artemis Generation, Rodriguez hopes to pass on the excitement of being part of the next frontier of space exploration. 
      “Take full advantage of the opportunities and resources available,” she said. “Meet new people, ask for help, never stop learning, growing, and contributing your experiences. Hopefully it will inspire others to do the same.” 
      Explore More
      3 min read Inside NASA’s New Orion Mission Evaluation Room for Artemis II 
      Article 7 days ago 3 min read Lindy Garay: Supporting Space Station Safety and Success
      Article 1 week ago 5 min read NASA’s Bennu Samples Reveal Complex Origins, Dramatic Transformation
      Asteroid Bennu, sampled by NASA’s OSIRIS-REx mission in 2020, is a mixture of dust that…
      Article 2 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...