Members Can Post Anonymously On This Site
15 Years Ago: STS-129 Delivers Cargo on the Third Utilization and Logistics Flight
-
Similar Topics
-
By NASA
5 Min Read NASA, Army National Guard Partner on Flight Training for Moon Landing
By Corinne Beckinger
When Artemis astronauts land on the Moon’s South Pole in a commercial human landing system, they will encounter a landscape pockmarked with deep craters, sloped connecting ridges, and harsh lighting conditions. The Moon’s lack of contrast, combined with its rolling terrain, will also pose a challenge, making it difficult for astronauts to overcome visual illusions on the lunar surface.
NASA astronaut Bob Hines (left) and Colorado Army National Guard HAATS instructor Ethan Jacobs practice landing procedures in the Rocky Mountains of Colorado in April 2025. Depending on the season, the snowy or dusty conditions can cause visual obstruction. Lunar dust can cause similar visual impairment during future crewed missions. In the mountains of northern Colorado, NASA and the U.S. Army National Guard are using military helicopters to develop a foundational lunar landersimulated flight training course to help astronauts practice flight and landing procedures for the Moon.
For decades, military helicopter pilots have trained at the HAATS (High-Altitude Army National Guard Aviation Training Site) in Gypsum, Colorado. In 2021, NASA and the Colorado Army National Guard began working together to develop a course specifically for the next generation of lunar explorers.
That NASA-specific course is scheduled to be finalized in August 2025, marking an important milestone for Artemis crewed landings training efforts.
“NASA is using a three-pronged approach with motion-based simulation, in-flight lunar landing analog training, and in-flight lunar simulation to build out its foundational training for Artemis Moon landings,” said NASA astronaut Doug Wheelock, who helped coordinate the training program. “Helicopters at or above 10,000 feet are not really efficient in the thin air, forcing us into operating with very thin power margins similar to the Apollo astronauts having to manage energy and momentum to land safely. The operations along with the terrain at the HAATS course in Colorado’s Rocky Mountains provide a valuable, real-world opportunity for Artemis astronauts to practice flying and landing in conditions similar to maneuvering a lander in the lunar environment.”
NASA astronaut Raja Chari participates in the HAATS course in April 2025. Since 2021, 22 NASA astronauts and one ESA (European Space Agency) astronaut have participated and evaluated the course based on functionality and Artemis mission needs. NASA/Laura Kiker NASA astronaut Raja Chari participates in the HAATS course in April 2025. Since 2021, 22 NASA astronauts and one ESA (European Space Agency) astronaut have participated and evaluated the course based on functionality and Artemis mission needs. NASA/Corinne Beckinger NASA’s human landing systems that will safely transport astronauts to and from the Moon’s surface will be provided by SpaceX and Blue Origin.
NASA’s Artemis III mission will build on earlier test flights and add new capabilities, including SpaceX’s Starship Human Landing System and advanced spacesuits, to send the first astronauts to explore the lunar South Pole and prepare humanity to go to Mars.
While each industry provider is responsible for training Artemis astronauts on its specific lander, NASA is establishing foundational training to help prepare astronauts for crewed flights.
Flight training opportunities like this are vital to mission success and crew safety.”
Doug Wheelock
NASA Astronaut
“Over the last few years, NASA and the Army National Guard have worked closely to evaluate training procedures and landing zone areas, incorporating accounts from Apollo astronauts,” Wheelock said. “During training flights at HAATS, astronauts can experience the visual illusions, cross-cockpit communication, and degraded visibility they may experience navigating to their landing zone near the lunar south pole. Flight training opportunities like this are vital to mission success and crew safety.”
Paired with trained instructors from the Army National Guard, astronauts fly to mountaintops and valleys in a range of aircraft, including LUH-72 Lakotas, CH-47 Chinooks, and UH-60 Black Hawks.
While one astronaut pilots the aircraft, an astronaut in the back charts the landing area, marking key landmarks, identifying potential hazards, and helping to track the flight path. Throughout the week-long course, the landing zones and situations become more challenging, allowing astronauts to experience team dynamics and practice communication skills they will need to land on the Moon.
“Our full-time Colorado Army National Guard pilots have thousands of flight hours navigating the Rocky Mountains at altitudes ranging from 6,500 to 14,200 feet, and we are reaching new heights by providing realistic and relevant training with NASA for Artemis,” said first sergeant Joshua Smith of the HAATS program. “Our Colorado Army National Guard pilots may not fly around the Moon, but we wear our motto, de monitbus ad astra — from the mountains to the stars — with pride.”
Fast Facts
On the Moon’s South Pole, the Sun is never more than 1.5 degrees above or below the horizon. With the Sun at such a low angle and with only a thin exosphere, shadows are stark, and astronauts may find it difficult to determine distances and heights.
The Moon’s atmosphere is extremely thin, with few particles, and is called an exosphere. The Moon’s exosphere is thin enough to glow in sunlight, which has been observed by spacecraft and some of the Apollo astronauts. The Moon’s surface is challenging to land on. There are inactive volcanoes, bounders, large basins, craters, and cracks in the Moon’s crust, caused by the Earth’s gravity tugging on the Moon. Moon dust can also obscure the view from the windows of a commercial human landing system, and affect sensors that relay important information, such as altitude and velocity, to astronauts. Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
For more information about Artemis visit:
https://www.nasa.gov/artemis
Share
Details
Last Updated Aug 18, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Human Lander Challenge General Human Landing System Program Marshall Space Flight Center Explore More
3 min read Human Rating and NASA-STD-3001
Article 3 days ago 3 min read NASA Seeks Proposals for 2026 Human Exploration Rover Challenge
Article 3 days ago 4 min read NASA IXPE’s ‘Heartbeat Black Hole’ Measurements Challenge Current Theories
Article 6 days ago Keep Exploring Discover More Topics From NASA
Artemis
Human Landing System
Earth’s Moon
The Moon makes Earth more livable, sets the rhythm of ocean tides, and keeps a record of our solar system’s…
Artemis III
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test undergoes a free flight test on the City Environment Range Testing for Autonomous Integrated Navigation range at NASA’s Langley Research Center in Hampton, Virginia on April 22, 2025.NASA/Rob Lorkiewicz Flying the friendly skies may one day include time-saving trips in air taxis to get from point A to point B – and NASA researchers are currently working to make that future a reality.
They are using wind tunnel and flight tests to gather data on an electric Vertical takeoff and landing (eVTOL) scaled-down small aircraft that resembles an air taxi that aircraft manufacturers can use for their own designs.
As air taxis take to the skies, engineers need real-world data on air taxi designs to better understand flight dynamics and design better flight control systems. These systems help stabilize and guide the motion of an aircraft while in flight, making sure it flies safely in various conditions.
Currently, most companies developing air taxis keep the information about how their aircraft behaves internal, so NASA is using this small aircraft to produce public, non-proprietary data available to all.
“NASA’s ability to perform high-risk flight research for increasingly automated and autonomous aircraft is really important,” said Siena Whiteside, who leads the Research Aircraft for eVTOL Enabling techNologies (RAVEN) project. “As we investigate these types of vehicles, we need to be able push the aircraft to its limits and understand what happens when an unforeseen event occurs…”
For example, Whiteside said, “…when a motor stops working. NASA is willing to take that risk and publish the data so that everyone can benefit from it.”
Researchers Jody Miller, left, and Brayden Chamberlain, right, stand by a crane that is used for tethered flight testing of the Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test at NASA’s Langley Research Center in Hampton, Virginia on Oct. 18, 2024.NASA/Ben Simmons Testing Air Taxi Tech
By using a smaller version of a full-sized aircraft called the RAVEN Subscale Wind Tunnel and Flight Test (RAVEN SWFT) vehicle, NASA is able to conduct its tests in a fast and cost-effective manner.
The small aircraft weighs 38 pounds with a wingspan of six feet and has 24 independently moving components.
Each component, called a “control effector,” can move during flight to change the aircraft’s motion – making it an ideal aircraft for advanced flight controls and autonomous flight research.
The testing is ongoing at NASA’s Langley Research Center in Hampton, Virginia.
Researchers first used the center’s 12-Foot Low-Speed Tunnel in 2024 and have since moved on to flight testing the small aircraft, piloting it remotely from the ground. During initial flight tests, the aircraft flew while tied to a tether. Now, the team performs free flights.
Lessons learned from the aircraft’s behavior in the wind tunnel helped to reduce risks during flight tests. In the wind tunnel, researchers performed tests that closely mirror the motion of real flight.
While the scale aircraft was in motion, researchers collected information about its flight characteristics, greatly accelerating the time from design to flight.
The team also could refine the aircraft’s computer control code in real time and upload software changes to it in under 5 minutes, saving them weeks and increasing the amount of data collected.
Researchers Ben Simmons, left, and Greg Howland, right, upload software changes in real time to the Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test at NASA’s Langley Research Center in Hampton, Virginia on Aug. 8, 2024, during testing in the 12-Foot Low-Speed Tunnel.NASA/David C. Bowman Partners in Research
NASA developed the custom flight controls software for RAVEN SWFT using tools from the company MathWorks.
NASA and MathWorks are partners under a Space Act Agreement to accelerate the design and testing of flight control approaches on RAVEN SWFT, which can apply to future novel aircraft.
The work has allowed NASA’s researchers to develop new methods to reduce the time for an aircraft to achieve its first flight and become a finished product.
RAVEN SWFT serves as a steppingstone to support the development of a potential larger, 1,000 pound-class RAVEN aircraft that will resemble an air taxi.
This larger RAVEN aircraft is being designed in collaboration with Georgia Institute of Technology and also would serve as an acoustical research tool, helping engineers understand the noise air taxi-like aircraft create.
The larger aircraft would allow NASA to continue to collect data and share it openly.
By performing flight research and making its data publicly available, NASA aims to advance U.S. leadership in technology development for safe, quiet, and affordable advanced air mobility operations.
Watch this Air Taxi Tests Video
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
4 min read NASA Seeks Moon and Mars Innovations Through University Challenge
Article 14 hours ago 3 min read NASA Uses Wind Tunnel to Test Advanced Air Mobility Aircraft Wing
Article 7 days ago 3 min read Three NASA Langley Employees Win Prestigious Silver Snoopy Awards
Article 7 days ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Aug 13, 2025 EditorJim BankeContactDiana Fitzgeralddiana.r.fitzgerald@nasa.govLocationNASA Langley Research Center Related Terms
Aeronautics Advanced Air Mobility Aeronautics Research Mission Directorate Drones & You Flight Demos Capabilities Integrated Aviation Systems Program Langley Research Center NASA Aircraft Transformational Tools Technologies Transformative Aeronautics Concepts Program View the full article
-
By NASA
A white-tailed deer fawn photographed on a Snapshot Wisconsin trail camera in Vernon County, WI Credit: WI DNR The Snapshot Wisconsin project recently collected their 100 millionth trail camera photo! What’s more, this milestone coincides with the project’s 10-year anniversary. Congratulations to the team and everyone who’s participated!
Snapshot Wisconsin utilizes a statewide network of volunteer-managed trail cameras to monitor and better understand the state’s diverse wildlife from white-tailed deer to snowshoe hares, whooping cranes, and much more.
“It’s been amazing to get a glimpse of our wild treasures via the Snapshot lens,” said one volunteer. “Satisfying to help advance wildlife research in the digital age.”
Snapshot Wisconsin was launched in 2013 with help from a NASA grant, and is overseen by the Wisconsin Department of Natural Resources. It recently won a new grant from NASA’s Citizen Science for Earth Systems Program.
Volunteer classifications of the species present in trail camera photos have fueled many different scientific investigations over the years. You, too, can get involved in the merriment by visiting the project’s site on the Zooniverse crowdsourcing platform and helping classify their latest photo season today!
Facebook logo @nasascience @nasascience Instagram logo @nasascience Linkedin logo @nasascience Share
Details
Last Updated Aug 06, 2025 Related Terms
Citizen Science Earth Science Division Explore More
4 min read STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms
Article
2 days ago
2 min read Radio JOVE Volunteers Tune In to the Sun’s Low Notes
Article
2 weeks ago
2 min read Bring NASA Science into Your Library!
Article
2 weeks ago
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This view of tracks trailing NASA’s Curiosity was captured July 26, 2025, as the rover simultaneously relayed data to a Mars orbiter. Combining tasks like this more efficiently uses energy generated by Curiosity’s nuclear power source, seen here lined with rows of white fins at the back of the rover.NASA/JPL-Caltech This is the same view of Curiosity’s July 25 mosaic, with labels indicating some key parts of the rover involved in recent efficiency improvements, plus a few prominent locations in the distance.NASA/JPL-Caltech New capabilities allow the rover to do science with less energy from its batteries.
Thirteen years since Curiosity landed on Mars, engineers are finding ways to make the NASA rover even more productive. The six-wheeled robot has been given more autonomy and the ability to multitask — improvements designed to make the most of Curiosity’s energy source, a multi-mission radioisotope thermoelectric generator (MMRTG). Increased efficiency means the rover has ample power as it continues to decipher how the ancient Martian climate changed, transforming a world of lakes and rivers into the chilly desert it is today.
Curiosity recently rolled into a region filled with boxwork formations. These hardened ridges are believed to have been created by underground water billions of years ago. Stretching for miles on this part of Mount Sharp, a 3-mile-tall (5-kilometer-tall) mountain, the formations might reveal whether microbial life could have survived in the Martian subsurface eons ago, extending the period of habitability farther into when the planet was drying out.
NASA’s Curiosity viewed this rock shaped like a piece of coral on July 24, 2025, the 4,608th Martian day of the mission. The rover has found many rocks that — like this one — were formed by minerals deposited by ancient water flows combined with billions of years of sandblasting by wind.NASA/JPL-Caltech/MSSS Carrying out this detective work involves a lot of energy. Besides driving and extending a robotic arm to study rocks and cliffsides, Curiosity has a radio, cameras, and 10 science instruments that all need power. So do the multiple heaters that keep electronics, mechanical parts, and instruments operating at their best. Past missions like the Spirit and Opportunity rovers and the InSight lander relied on solar panels to recharge their batteries, but that technology always runs the risk of not receiving enough sunlight to provide power.
Instead, Curiosity and its younger sibling Perseverance each use their MMRTG nuclear power source, which relies on decaying plutonium pellets to create energy and recharge the rover’s batteries. Providing ample power for the rovers’ many science instruments, MMRTGs are known for their longevity (the twin Voyager spacecraft have relied on RTGs since 1977). But as the plutonium decays over time, it takes longer to recharge Curiosity’s batteries, leaving less energy for science each day.
The team carefully manages the rover’s daily power budget, factoring in every device that draws on the batteries. While these components were all tested extensively before launch, they are part of complex systems that reveal their quirks only after years in the extreme Martian environment. Dust, radiation, and sharp temperature swings bring out edge cases that engineers couldn’t have expected.
“We were more like cautious parents earlier in the mission,” said Reidar Larsen of NASA’s Jet Propulsion Laboratory in Southern California, which built and operates the rover. Larsen led a group of engineers who developed the new capabilities. “It’s as if our teenage rover is maturing, and we’re trusting it to take on more responsibility. As a kid, you might do one thing at a time, but as you become an adult, you learn to multitask.”
More Efficient Science
Generally, JPL engineers send Curiosity a list of tasks to complete one by one before the rover ends its day with a nap to recharge. In 2021, the team began studying whether two or three rover tasks could be safely combined, reducing the amount of time Curiosity is active.
For example, Curiosity’s radio regularly sends data and images to a passing orbiter, which relays them to Earth. Could the rover talk to an orbiter while driving, moving its robotic arm, or snapping images? Consolidating tasks could shorten each day’s plan, requiring less time with heaters on and instruments in a ready-to-use state, reducing the energy used. Testing showed Curiosity safely could, and all of these have now been successfully demonstrated on Mars.
Another trick involves letting Curiosity decide to nap if it finishes its tasks early. Engineers always pad their estimates for how long a day’s activity will take just in case hiccups arise. Now, if Curiosity completes those activities ahead of the time allotted, it will go to sleep early.
By letting the rover manage when it naps, there is less recharging to do before the next day’s plan. Even actions that trim just 10 or 20 minutes from a single activity add up over the long haul, maximizing the life of the MMRTG for more science and exploration down the road.
Miles to Go
In fact, the team has been implementing other new capabilities on Curiosity for years. Several mechanical issues required a rework of how the robotic arm’s rock-pulverizing drill collects samples, and driving capabilities have been enhanced with software updates. When a color filter wheel stopped turning on one of the two cameras mounted on Mastcam, Curiosity’s swiveling “head,” the team developed a workaround allowing them to capture the same beautiful panoramas.
JPL also developed an algorithm to reduce wear on Curiosity’s rock-battered wheels. And while engineers closely monitor any new damage, they aren’t worried: After 22 miles (35 kilometers) and extensive research, it’s clear that, despite some punctures, the wheels have years’ worth of travel in them. (And in a worst-case scenario, Curiosity could remove the damaged part of the wheel’s “tread” and still drive on the remaining part.)
Together, these measures are doing their job to keep Curiosity as busy as ever.
More About Curiosity
Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington as part of NASA’s Mars Exploration Program portfolio. Malin Space Science Systems in San Diego built and operates Mastcam.
For more about Curiosity, visit:
science.nasa.gov/mission/msl-curiosity
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-098
Share
Details
Last Updated Aug 04, 2025 Related Terms
Curiosity (Rover) Mars Mars Science Laboratory (MSL) Radioisotope Power Systems (RPS) Explore More
4 min read NASA Tests New Heat Source Fuel for Deep Space Exploration
Article 2 weeks ago 6 min read Advances in NASA Imaging Changed How World Sees Mars
Article 3 weeks ago 6 min read NASA Mars Orbiter Learns New Moves After Nearly 20 Years in Space
Article 1 month ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.