Jump to content

55 Years Ago: Apollo 12 Launches


Recommended Posts

  • Publishers
Posted
A white rocket lifts off from a launchpad, contrasting against the dark blue sky. A column of flames casts a bright light on the bottom of the image, highlighting white vapor spreading outward. An orange gantry is visible behind the rocket.
NASA

The Apollo 12 spacecraft launches from NASA’s Kennedy Space Center in Florida in this image from Nov. 14, 1969, with astronauts Charles Conrad Jr., Richard F. Gordon Jr., and Alan L. Bean aboard. During liftoff, the Saturn V rocket which carried the Apollo capsule was struck twice by lightning.

On Nov. 19, 1969, the lunar module landed on the Moon. About three hours after landing, Conrad emerged from the lunar module, becoming the third person to step on the Moon. He was followed by Bean.

Image credit: NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The 33rd SpaceX commercial resupply services mission for NASA, scheduled to liftoff from the agency’s Kennedy Space Center in Florida in late August, is heading to the International Space Station with an important investigation for the future of bone health.
      The experiment will test how microgravity affects bone-forming and bone-degrading cells and explore potential ways to prevent bone loss. This research could help protect astronauts on future long-duration missions to the Moon and Mars, while also advancing treatments for millions of people on Earth who suffer from osteoporosis.
      Mesenchymal stem cells (MSCs) are derived from human bone marrow and stained with rapid red dye NASA Space’s Hidden Health Mystery
       During long-duration missions, astronauts may experience a gradual reduction in bone density—typically around 1% to 2% per month—even with consistent exercise routines. While scientists understand how bones work on Earth, they aren’t sure exactly why bones weaken so quickly in microgravity.
      Previous research aboard the space station revealed that microgravity changes how stem cells behave and what substances they release. Scientists now want to dig deeper into these cellular changes to better understand what causes bone loss in space and explore potential ways to prevent it.
      Blocking a Potential Bone Thief
      The Microgravity Associated Bone Loss-B (MABL-B) investigation focuses on special stem cells called mesenchymal stem cells, or MSCs. As these cells mature, they build new bone tissue in the body.
      Scientists suspect that a protein called IL-6 might be the culprit behind bone problems in space. Data from the earlier MABL-A mission suggests that microgravity promotes the type of IL-6 signaling that enhances bone degradation. The MABL-B experiment will investigate this by testing ways to block this IL-6 signaling pathway.
      The experiment will grow mesenchymal stem cells alongside other bone cells in special containers designed for space research. Cells will be cultured for 19 days aboard the space station, with crew members periodically collecting samples for analysis back on Earth.
      How this benefits space exploration
      The research could lead to targeted treatments that protect astronauts from bone loss during long-duration missions to the Moon, Mars, and beyond. As crews venture farther from Earth, bone health becomes increasingly critical since medical evacuation or emergency return to Earth won’t be possible during Mars missions.
      How this benefits humanity
      The findings could provide new insights into age-related bone loss that affects millions of people on Earth. Understanding how the IL-6 protein affects bone health may lead to new treatments for osteoporosis and other bone conditions that come with aging.
      Related Resources
      Microgravity Associated Bone Loss-B (MABL-B) Microgravity Associated Bone Loss-A (MABL-A) Microgravity Expanded Stem Cells About BPS
      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      View the full article
    • By NASA
      5 min read
      NASA’s Apollo Samples, LRO Help Scientists Predict Moonquakes
      This mosaic of the Taurus-Littrow valley was made using images from the Narrow Angle Cameras onboard NASA’s Lunar Reconnaissance Orbiter. The orbiter has been circling and studying the Moon since 2009. The ancient-lava-filled valley is cut by the Lee-Lincoln thrust fault, visible as a sinuous, white line extending from South Massif (mountain in the bottom left corner) to North Massif (mountain in the top center) where the fault abruptly changes direction and cuts along the slope of North Massif. The Lee-Lincoln fault has been the source of multiple strong moonquakes causing landslides and boulder falls on both North and South massifs. The approximate location of the Apollo 17 landing site is indicated to the right of the fault with a white “x”. NASA/ASU/Smithsonian As NASA prepares to send astronauts to the surface of the Moon’s south polar region for the first time ever during the Artemis III mission, scientists are working on methods to determine the frequency of moonquakes along active faults there.
      Faults are cracks in the Moon’s crust that indicate that the Moon is slowly shrinking as its interior cools over time. The contraction from shrinking causes the faults to move suddenly, which generates quakes. Between 1969 and 1977, a network of seismometers deployed by Apollo astronauts on the Moon’s surface recorded thousands of vibrations from moonquakes.
      Moonquakes are rare, with the most powerful ones, about magnitude 5.0, occurring near the surface. These types of quakes are much weaker than powerful quakes on Earth (magnitude 7.0 or higher), posing little risk to astronauts during a mission lasting just a few days. But their effects on longer-term lunar surface assets could be significant. Unlike an earthquake that lasts for tens of seconds to minutes, a moonquake can last for hours, enough time to damage or tip over structures, destabilize launch vehicles on the surface, or interrupt surface operations.
      “The hazard probability goes way up depending on how close your infrastructure is to an active fault,” said Thomas Watters, senior scientist emeritus at the Smithsonian’s National Air & Space Museum in Washington.
      Watters is a long-time researcher of lunar geology and a co-investigator on NASA’s LRO (Lunar Reconnaissance Orbiter) camera. Recently, he and Nicholas Schmerr, a planetary seismologist at the University of Maryland in College Park, developed a new method for estimating the magnitude of seismic shaking by analyzing evidence of dislodged boulders and landslides in an area, as the scientists reported on July 30 in the journal Science Advances. Studies like these can help NASA plan lunar surface assets in safer locations.
      Unlike an earthquake that lasts for tens of seconds to minutes, a moonquake can last for hours, enough time to damage or tip over structures, destabilize launch vehicles on the surface, or interrupt surface operations.


      There are thousands of faults across the Moon that may still be active and producing quakes. Watters and his team have identified these faults by analyzing data from LRO, which has been circling the Moon since 2009, mapping the surface and taking pictures, providing unprecedented detail of features like faults, boulders, and landslides.
      For this study, Watters and Schmerr chose to analyze surface changes from quakes generated by the Lee-Lincoln fault in the Taurus-Littrow valley. NASA’s Apollo 17 astronauts, who landed about 4 miles west of the fault on Dec. 11, 1972, explored the area around the fault during their mission.
      By studying boulder falls and a landslide likely dislodged by ground shaking near Lee Lincoln, Watters and Schmerr estimated that a magnitude 3.0 moonquake — similar to a relatively minor earthquake — occurs along the Lee Lincoln fault about every 5.6 million years.
      “One of the things we’re learning from the Lee-Lincoln fault is that many similar faults have likely had multiple quakes spread out over millions of years,” Schmerr said. “This means that they are potentially still active today and may keep generating more moonquakes in the future.”
      The authors chose to study the Lee-Lincoln fault because it offered a unique advantage: Apollo 17 astronauts brought back samples of boulders from the area. By studying these samples in labs, scientists were able to measure changes in the boulders’ chemistry caused by exposure to cosmic radiation over time (the boulder surface is freshly exposed after breaking off a larger rock that would have otherwise shielded it).
      This cosmic radiation exposure information helped the researchers determine how long the boulders had been sitting in their current locations, which in turn helped inform the estimate of possible timing and frequency of quakes along the Lee-Lincoln fault.
      This 1972 image shows Apollo 17 astronaut Harrison H. Schmitt sampling a boulder at the base of North Massif in the Taurus-Littrow valley on the Moon. This large boulder is believed to have been dislodged by a strong moonquake that occurred about 28.5 million years ago. The source of the quake was likely a seismic event along the Lee-Lincoln fault. The picture was taken by astronaut Eugene A. Cernan, Apollo 17 commander. NASA/JSC/ASU Apollo 17 astronauts investigated the boulders at the bases of two mountains in the valley. The tracks left behind indicated that the boulders may have rolled downhill after being shaken loose during a moonquake on the fault. Using the size of each boulder, Watters and Schmerr estimated how hard the ground shaking would have been and the magnitude of the quake that would have caused the boulders to break free.
      The team also estimated the seismic shaking and quake magnitude that would be needed to trigger the large landslide that sent material rushing across the valley floor, suggesting that this incident caused the rupture event that formed the Lee-Lincoln fault.
      A computer simulation depicting the seismic waves emanating from a shallow moonquake on the Lee-Lincoln fault in the Taurus-Littrow valley on the Moon. The label “A17” marks the Apollo 17 landing site. The audio represents a moonquake that was recorded by a seismometer placed on the surface by astronauts. The seismic signal is converted into sound. Both audio and video are sped up to play 10 times faster than normal. The background image is a globe mosaic image from NASA’s Lunar Reconnaissance Orbiter’s Wide-Angle Camera. Red and blue are positive (upward ground motion) and negative (downward ground motion) polarities of the wave. Nicholas Schmerr Taking all these factors into account, Watters and Schmerr estimated that the chances that a quake would have shaken the Taurus-Littrow valley on any given day while the Apollo 17 astronauts were there are 1 in 20 million, the authors noted.
      Their findings from the Lee-Lincoln fault are just the beginning. Watters and Schmerr now plan to use their new technique to analyze quake frequency at faults in the Moon’s south polar region, where NASA plans to explore.
      NASA also is planning to send more seismometers to the Moon. First, the Farside Seismic Suite will deliver two sensitive seismometers to Schrödinger basin on the far side of the Moon onboard a lunar lander as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. Additionally, NASA is developing a payload, called the Lunar Environment Monitoring Station, for potential flight on NASA’s Artemis III mission to the South Pole region. Co-led by Schmerr, the payload will assess seismic risks for future human and robotic missions to the region.

      Read More: What Are Moonquakes?


      Read More: Moonquakes and Faults Near Lunar South Pole

      For more information on NASA’s LRO, visit:

      Media Contacts:
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600 
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      lonnie.shekhtman@nasa.gov
      About the Author
      Lonnie Shekhtman

      Share








      Details
      Last Updated Aug 14, 2025 Related Terms
      Apollo Apollo 17 Artemis Artemis 3 Artemis Campaign Development Division Earth’s Moon Exploration Systems Development Mission Directorate Goddard Space Flight Center Humans in Space Lunar Reconnaissance Orbiter (LRO) Missions NASA Centers & Facilities NASA Directorates Planetary Geosciences & Geophysics Planetary Science Planetary Science Division Science & Research Science Mission Directorate The Solar System Explore More
      4 min read Compton J. Tucker Retires from NASA and is Named NAS Fellow


      Article


      21 hours ago
      5 min read NASA’s Hubble Uncovers Rare White Dwarf Merger Remnant


      Article


      1 day ago
      6 min read Webb Narrows Atmospheric Possibilities for Earth-sized Exoplanet TRAPPIST-1 d


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Research traveling to the International Space Station aboard NASA’s SpaceX 33rd commercial resupply mission includes testing 3D bioprinting of an implantable medical device, observing behavior of engineered liver tissues, examining microgravity’s effects on bone-forming cells, and additional 3D printing of metal in space. The SpaceX Dragon spacecraft is scheduled to launch to the orbiting laboratory in late August.
      For nearly 25 years, the International Space Station has provided research capabilities used by scientists from over 110 countries to conduct more than 4,000 groundbreaking experiments in microgravity. Research conducted aboard the space station advances future space exploration – including missions to the Moon and Mars – and provides multiple benefits to humanity.
      Read more about some of the latest investigations headed to the orbiting lab.
      Better nerve bridge
      Eight implantable nerve devices printed on the space station.Auxilium Biotechnologies Scientists are creating an implantable device in microgravity that could support nerve regrowth after injuries. The device is created through bioprinting, a type of 3D printing that uses living cells or proteins as raw materials.
      Traumatic injuries can leave a gap between nerves, and existing treatments have limited ability to restore nerve function and may result in impaired physical function. A bioprinted device to bridge the nerve gap could accelerate recovery and preserve function.
      “On this mission, we plan to print up to 18 of the implants and anticipate using them in preclinical studies on the ground in 2026 and 2027,” said Jacob Koffler, principal investigator at Auxilium Biotechnologies Inc in San Diego. Tissues bioprinted in microgravity may be higher quality than those made on Earth and results could support future manufacturing of medical devices in space for crew members on space missions and patients on Earth.
      Bioprinted tissues with blood vessels
      A researcher holds vascularized tissue bioprinted on the ground for study in space.The Wake Forest Institute of Regenerative Medicine Researchers plan to bioprint liver tissue containing blood vessels on the ground and examine how the tissue develops in microgravity. Results could help support the eventual production of entire functional organs for transplantation on Earth.
      A previous mission tested whether this type of bioprinted liver tissue survived and functioned in space, according to James Yoo, principal investigator at the Wake Forest Institute of Regenerative Medicine in Winston-Salem. This round could show whether microgravity improves development of the bioprinted tissue.
      “We are especially keen on accelerating the development of vascular networks in the tissue,” Yoo said. Vascular networks produce the blood vessels needed to keep these tissues functional and healthy.
      Blocking bone loss
      A microscopic image of stem cells derived from human bone marrow stained with red dye.Mayo Clinic A study of bone-forming stem cells in microgravity could provide insight into the basic mechanisms of the bone loss astronauts experience during space flight.
      Researchers identified a protein in the body called IL-6 that can send signals to stem cells to promote either bone formation or bone loss. This work evaluates whether blocking IL-6 signals could reduce bone loss during spaceflight.
      “If we are successful, the compound also can be evaluated for the treatment of conditions associated with bone loss on Earth, such as osteoporosis and certain types of cancers,” said Abba Zubair, principal investigator at the Mayo Clinic in Florida.
      Space printing goes metal
      Metal specimens printed on the ground for ESA’s Metal 3D Printer investigation.Airbus Defence and Space SAS As mission duration and distance from Earth increase, resupply becomes harder. Additive manufacturing or 3D printing could be used to make parts and dedicated tools on demand, enhancing mission autonomy.
      Research on the space station has made great strides in 3D printing with plastic, but it is not suitable for all uses. The ESA (European Space Agency) Metal 3D Printer investigation builds on recent successful printing of the first metal parts in space.
      “We’ll print several small cubes using different strategies to help determine the optimal approach for metal printers in space,” said Rob Postema, ESA technical officer. Quality of the space-printed items will be compared against reference prints made on the ground.
      This investigation is a continuation of ESA’s efforts to develop in-space manufacturing and materials recycling capabilities. The ESA investigation team includes Airbus Defence and Space SAS and the User Support Centre CADMOS in France.
      Download high-resolution photos and videos of the research mentioned in this article.
      Learn more about the research aboard the International Space Station at:
      www.nasa.gov/iss-science
      Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Space Station Research and Technology Tools and Information
      Space Station Research Results
      Station Benefits for Humanity
      View the full article
    • By NASA
      NASA Remembers Apollo Astronaut Jim Lovell
    • By NASA
      A white-tailed deer fawn photographed on a Snapshot Wisconsin trail camera in Vernon County, WI Credit: WI DNR The Snapshot Wisconsin project recently collected their 100 millionth trail camera photo! What’s more, this milestone coincides with the project’s 10-year anniversary. Congratulations to the team and everyone who’s participated!
      Snapshot Wisconsin utilizes a statewide network of volunteer-managed trail cameras to monitor and better understand the state’s diverse wildlife from white-tailed deer to snowshoe hares, whooping cranes, and much more.
      “It’s been amazing to get a glimpse of our wild treasures via the Snapshot lens,” said one volunteer. “Satisfying to help advance wildlife research in the digital age.”
      Snapshot Wisconsin was launched in 2013 with help from a NASA grant, and is overseen by the Wisconsin Department of Natural Resources. It recently won a new grant from NASA’s Citizen Science for Earth Systems Program.
      Volunteer classifications of the species present in trail camera photos have fueled many different scientific investigations over the years. You, too, can get involved in the merriment by visiting the project’s site on the Zooniverse crowdsourcing platform and helping classify their latest photo season today!
      Facebook logo @nasascience @nasascience Instagram logo @nasascience Linkedin logo @nasascience Share








      Details
      Last Updated Aug 06, 2025 Related Terms
      Citizen Science Earth Science Division Explore More
      4 min read STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms


      Article


      2 days ago
      2 min read Radio JOVE Volunteers Tune In to the Sun’s Low Notes


      Article


      2 weeks ago
      2 min read Bring NASA Science into Your Library!


      Article


      2 weeks ago
      View the full article
  • Check out these Videos

×
×
  • Create New...