Jump to content

NASA Data Helps International Community Prepare for Sea Level Rise


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Coastal locations, such as Drakes Bay on the Point Reyes peninsula in Northern California
Coastal locations, such as Drakes Bay on the Point Reyes peninsula in Northern California, are increasingly vulnerable to sea level rise.
NOAA/NMFS/WCR/CCO

The information will help people who live in coastal areas prepare for impacts caused by rising sea levels.

Earth’s ocean is rising, disrupting livelihoods and infrastructure in coastal communities around the world. Agencies and organizations are working to prepare people as their world changes around them, and NASA information is helping these efforts.

The agency’s global data is now available in the sea level section of the Earth Information Center. NASA developed the global sea level change website in collaboration with the U.S. Department of Defense, the World Bank, the U.S. Department of State, and the United Nations Development Programme.  

The site includes information on projected sea level rise through the year 2150 for coastlines around the world, as well as estimates of how much flooding a coastal community or region can expect to see in the next 30 years. The projections come from data collected by NASA and its partners and from computer models of ice sheets and the ocean, as well as the latest sea level assessment from the Intergovernmental Panel on Climate Change, and other sources.

“NASA innovates for the benefit of humanity. Our cutting-edge instruments and data-driven information tools help communities and organizations respond to natural hazards and extreme weather, and inform critical coastal infrastructure planning decisions,” said Karen St. Germain, director of the Earth science division at NASA Headquarters in Washington.

Information to Action

International organizations such as the World Bank will use the data from the global sea level change site for tasks including the creation of Climate Risk Profiles for countries especially vulnerable to sea level rise.

The Defense Department will continue to incorporate sea level rise data into its plans to anticipate and respond to hazards posed to its facilities by the effects of rising oceans. Similarly, the State Department uses the information for activities ranging from disaster preparedness to long-term adaptation planning to supporting partners around the world in related efforts.

“We are at a moment of truth in our fight against the climate crisis. The science is unequivocal and must serve as the bedrock upon which decision-making is built. With many communities around the world already facing severe impacts from sea-level rise, this new resource provides a vital tool to help them protect lives and livelihoods. It also illustrates what is at stake between a 1.5-degree-Celsius world and a current-policies trajectory for all coastal communities worldwide,” said Assistant Secretary-General Selwin Hart, special adviser to the United Nations secretary-general on climate action and just transition.

Rising Faster

NASA-led data analyses have revealed that between 1970 and 2023, 96% of countries with coastlines have experienced sea level rise. The rate of that global rise has also accelerated, more than doubling from 0.08 inches (0.21 centimeters) per year in 1993 to about 0.18 inches (0.45 centimeters) per year in 2023.

As the rate of sea level rise increases, millions of people could face the related effects sooner than previously projected, including larger storm surges, more saltwater intrusion into groundwater, and additional high-tide flood days — also known as nuisance floods or sunny day floods.

“This new platform shows the timing of future floods and the magnitude of rising waters in all coastal countries worldwide, connecting science and physics to impacts on people’s livelihoods and safety,” said Nadya Vinogradova Shiffer, director of the ocean physics program at NASA Headquarters in Washington.

Data released earlier this year found that Pacific Island nations will experience at least 6 inches (15 centimeters) of sea level rise in the next 30 years. The number of high-tide flood days will increase by an order of magnitude for nearly all Pacific Island nations by the 2050s.

“The data is clear: Sea levels are rising around the world, and they’re rising faster and faster,” said Ben Hamlington, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California and head of the agency’s sea level change science team. “Having the best information to make decisions about how to plan for rising seas is more crucial than ever.”

To explore the global sea level change site:

https://earth.gov/sealevel

News Media Contacts

 

Karen Fox / Elizabeth Vlock
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov

Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov

2024-158

Share

Details

Last Updated
Nov 13, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      El piloto de pruebas de la NASA Nils Larson inspecciona el avión de investigación F-15D de la agencia en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, antes de un vuelo de calibración para una sonda de detección de impactos de campo cercano recién instalada. Montada en el F-15D, la sonda está diseñada para medir las ondas de choque generadas por el silencioso avión supersónico X-59 durante el vuelo. Los datos ayudarán a los investigadores a comprender mejor cómo se comportan las ondas de choque en las proximidades de la aeronave, apoyando la misión Quesst de la NASA para permitir vuelos supersónicos silenciosos sobre tierra.NASA/Steve Freeman El piloto de pruebas de la NASA Nils Larson inspecciona el avión de investigación F-15D de la agencia en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, antes de un vuelo de calibración para una sonda de detección de impactos de campo cercano recién instalada. Montada en el F-15D, la sonda está diseñada para medir las ondas de choque generadas por el silencioso avión supersónico X-59 durante el vuelo. Los datos ayudarán a los investigadores a comprender mejor cómo se comportan las ondas de choque en las proximidades de la aeronave, apoyando la misión Quesst de la NASA para permitir vuelos supersónicos silenciosos sobre tierra.NASA/Steve Freeman El avión de investigación F-15D de la NASA realiza un vuelo de prueba cerca de Edwards, California, con una sonda de detección de impactos de campo cercano. Idéntica a una versión previamente volada que estaba prevista como reserva, esta nueva sonda captará datos de ondas de choque cerca del X-59 mientras vuela a velocidad más rápida que la del sonido apoyando la misión Quesst de la NASA.NASA/Jim Ross El avión de investigación F-15D de la NASA realiza un vuelo de prueba cerca de Edwards, California, con una sonda de detección de impactos de campo cercano. Idéntica a una versión previamente volada que estaba prevista como reserva, esta nueva sonda captará datos de ondas de choque cerca del X-59 mientras vuela a velocidad más rápida que la del sonido apoyando la misión Quesst de la NASA.NASA/Jim Ross Read this story in English here.
      Cuando se prueba un avión de última generación de la NASA, se necesitan herramientas especializadas para realizar pruebas y capturar datos, pero si esas herramientas necesitan mantenimiento, hay que esperar hasta que se reparen. A menos que tengas un respaldo. Por eso, recientemente la NASA ha calibró una nueva sonda de deteccíon de impactos para capturar datos de ondas de choque cuando el silencioso avión de investigación supersónico X-59 de la agencia inicie sus vuelos de prueba. 
      Cuando un avión vuela más rápido que la velocidad del sonido, produce ondas de choque que viajan a través del aire, creando fuertes estampidos sónicos. El X-59 desviará esas ondas de choque, produciendo sólo un silencioso golpe supersónico. En las últimas semanas, la NASA ha completado los vuelos de calibración de una nueva sonda de detección de impactos de campo cercano, un aparato en forma de cono que captará datos sobre las ondas de choque que generará el X-59. 
      Esta sonda está montada en un avión de investigación F-15D que volará muy cerca del X-59 para recopilar los datos que necesita la NASA. La nueva unidad servirá como la sonda de campo cercano principal de la NASA, con un modelo idéntico desarrollado por la NASA el año pasado actuará como reserva montada en otro F-15B. 
      Las dos unidades significan que el equipo del X-59 tiene una alternativa lista en caso de que la sonda principal necesite mantenimiento o reparaciones. Para pruebas de vuelo como las del X-59, donde la recopilación de datos es crucial y las operaciones giran en torno a plazos ajustados, condiciones meteorológicas y otras variables, las copias de respaldo de los equipos críticos ayudan a garantizar la continuidad, mantener los plazos y preservar la eficiencia de las operaciones. 
      “Si le ocurre algo a la sonda, como una falla en unsensor, no hay una solución fácil,” explica Mike Frederick, investigador principal de la sonda en el Centro de Investigación de Vuelos Armstrong de la NASA en Edwards, California. “El otro factor es el propio avión. Si uno necesita mantenimiento, no queremos retrasar los vuelos del X-59.” 
      Para calibrar la nueva sonda, el equipo midió las ondas de choque de un avión de investigación F/A-18 de la NASA. Los resultados preliminares indicaron que la sonda captó con éxito los cambios de presión asociados a las ondas de choque, de acuerdo con las expectativas del equipo. Frederick y su equipo ahora están revisando los datos para confirmar que se alinean con los modelos matemáticos en tierra y cumplen las normas de precisión requeridas para los vuelos X-59. 
      Los investigadores de la NASA en Armstrong se están preparando para vuelos adicionales con las sondas principal y de respaldo en sus aviones F-15. Cada avión volará a velocidad supersónico y recopilará datos de las ondas de choque del otro. El equipo está trabajando para validar tanto la sonda principal como la de respaldo para confirmar la redundancia total;en otras palabras, asegurarse de que tengan un respaldo fiable y listo para usar. 
      Artículo Traducido por: Priscila Valdez
      Share
      Details
      Last Updated May 13, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
      Aeronáutica NASA en español Explore More
      5 min read Las carreras en la NASA despegan con las pasantías
      Article 1 day ago 4 min read El X-59 de la NASA completa las pruebas electromagnéticas
      Article 2 months ago 11 min read La NASA identifica causa de pérdida de material del escudo térmico de Orion de Artemis I
      Article 5 months ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Teams at NASA’s Michoud Assembly Facility in New Orleans move a liquid hydrogen tank for the agency’s SLS (Space Launch System) rocket into the factory’s final assembly area on April 22, 2025. The propellant tank is one of five major elements that make up the 212-foot-tall rocket stage. NASA/Steven Seipel NASA completed another step to ready its SLS (Space Launch System) rocket for the Artemis III mission as crews at the agency’s Michoud Assembly Facility in New Orleans recently applied a thermal protection system to the core stage’s liquid hydrogen tank.
      Building on the crewed Artemis II flight test, Artemis III will add new capabilities with the human landing system and advanced spacesuits to send the first astronauts to explore the lunar South Pole region and prepare humanity to go to Mars. Thermal protection systems are a cornerstone of successful spaceflight endeavors, safeguarding human life, and enabling the launch and controlled return of spacecraft.
      The tank is the largest piece of SLS flight hardware insulated at Michoud. The hardware requires thermal protection due to the extreme temperatures during launch and ascent to space – and to keep the liquid hydrogen at minus 423 degrees Fahrenheit on the pad prior to launch.
      “The thermal protection system protects the SLS rocket from the heat of launch while also keeping the thousands of gallons of liquid propellant within the core stage’s tanks cold enough. Without the protection, the propellant would boil off too rapidly to replenish before launch,” said Jay Bourgeois, thermal protection system, test, and integration lead at NASA Michoud. “Thermal protection systems are crucial in protecting all the structural components of SLS during launch and flight.”
      In February, Michoud crews with NASA and Boeing, the SLS core stage prime contractor, completed the thermal protection system on the external structure of the rocket’s liquid hydrogen propellant fuel tank, using a robotic tool in what is now the largest single application in spaceflight history. The robotically controlled operation coated the tank with spray-on foam insulation, distributing 107 feet of the foam to the tank in 102 minutes. When the foam is applied to the core stage, it gives the rocket a canary yellow color. The Sun’s ultraviolet rays naturally “tan” the thermal protection, giving the SLS core stage its signature orange color, like the space shuttle external tank.
      Having recently completed application of the thermal protection system, teams will now continue outfitting the 130-foot-tall liquid hydrogen tank with critical systems to ready it for its designated Artemis III mission. The core stage of SLS is the largest ever built by length and volume, and was manufactured at Michoud using state-of-the-art manufacturing equipment. (NASA/Steven Seipel) While it might sound like a task similar to applying paint to a house or spraying insulation in an attic, it is a much more complex process. The flexible polyurethane foam had to withstand harsh conditions for application and testing. Additionally, there was a new challenge: spraying the stage horizontally, something never done previously during large foam applications on space shuttle external tanks at Michoud. All large components of space shuttle tanks were in a vertical position when sprayed with automated processes.
      Overall, the rocket’s core stage is 212 feet with a diameter of 27.6 feet, the same diameter as the space shuttle’s external tank. The liquid hydrogen and liquid oxygen tanks feed four RS-25 engines for approximately 500 seconds before SLS reaches low Earth orbit and the core stage separates from the upper stage and NASA’s Orion spacecraft.
      “Even though it only takes 102 minutes to apply the spray, a lot of careful preparation and planning is put into this process before the actual application of the foam,” said Boeing’s Brian Jeansonne, the integrated product team senior leader for the thermal protection system at NASA Michoud. “There are better process controls in place than we’ve ever had before, and there are specialized production technicians who must have certifications to operate the system. It’s quite an accomplishment and a lot of pride in knowing that we’ve completed this step of the build process.”
      The core stage of SLS is the largest NASA has ever built by length and volume, and it was manufactured at Michoud using state-of-the-art manufacturing equipment. Michoud is a unique, advanced manufacturing facility where the agency has built spacecraft components for decades, including the space shuttle’s external tanks and Saturn V rockets for the Apollo program.
      Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      For more information on the Artemis Campaign, visit:
      https://www.nasa.gov/feature/artemis/
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034 
      jonathan.e.deal@nasa.gov
      View the full article
    • By NASA
      Sasha Weston, project support, Small Spacecraft and Distributed Systems program, with the Project and Engineering Support Services II contract with NASA, discusses the program with a participant, right, during Ames Partnership Days on April 29, 2025, at NASA’s Ames Research Center in California’s Silicon Valley. Through partnerships, the program advances technologies that enable small spacecraft to achieve NASA missions in faster and more affordable ways.NASA/Brandon Torres Navarrete On April 29, more than 90 representatives from industry, U.S. federal labs, government agencies, and academia gathered at NASA’s Ames Research Center in California’s Silicon Valley to learn about the center’s groundbreaking research and development capabilities. The three-day event provided insight into the many ways to collaborate with NASA, including tapping into the agency’s singular subject matter expertise and gaining access to state-of-the-art facilities at NASA Ames and centers across the country. Partnerships help the agency to advance technological innovation, enable science, and foster the emerging space economy.
      Terry Fong, senior scientist for autonomous systems at NASA Ames, summed up the objective of the event when he noted, “I don’t believe anyone – government, academia, industry – has a monopoly on good ideas. It’s how you best combine forces to have the greatest effect.”
      Terry Fong, senior scientist at NASA Ames, center, discusses the center’s capabilities in intelligent adaptive systems and potential applications with Jessica Nowinski, chief of the Human Systems Integration division, left, and Alonso Vera, senior technologist, right, on April 29, 2025, at NASA’s Ames Research Center in California’s Silicon Valley.NASA/Brandon Torres Navarrete Author: Jeanne Neal
      Share
      Details
      Last Updated May 13, 2025 Related Terms
      Ames Research Center General Get Involved NASA Centers & Facilities Partner With Us Small Business Innovation Research / Small Business Keep Exploring Discover More Topics From NASA
      SmallSats and CubeSats
      These miniaturized spacecrafts are used to deliver small payloads into space. LTB (Lunar Trailblazer) is an example of a SmallSat…
      Technology and Innovation
      NASA innovates and tests new technology on satellites and planes, helping commercial and academic partners develop better ways to observe…
      Technology Workshops and Events
      SBIR/STTR News & Success Stories
      View the full article
    • By NASA
      Explore This Section Science Science Activation Take a Tour of the Cosmos with… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      Take a Tour of the Cosmos with New Interactives from NASA’s Universe of Learning
      Ready for a tour of the cosmos? NASA’s Universe of Learning has released a new, dynamic way for lifelong learners to explore NASA’s breathtaking images of the universe—ViewSpace interactive Image Tours. ViewSpace has an established track record of providing museums, science centers, libraries, and other informal learning environments with free, web-based videos and digital interactives—like its interactive Image Sliders. These new Image Tours are another unique experience from NASA’s Universe of Learning, created through a collaboration between scientists that operate NASA telescopes and experts well-versed in the most modern methods of learning. Hands-on, self-directed learning resources like these have long been valued by informal learning sites as effective means for engaging and intriguing users with the latest discoveries from NASA’s space telescope missions—while encouraging lifelong learners to continue their passionate exploration of the stars, galaxies, and distant worlds.
      With these new ViewSpace Image Tours, visitors can take breathtaking journeys through space images that contain many exciting stories. The “Center of the Milky Way Galaxy” Tour, for example, uses breathtaking images from NASA’s Hubble, Spitzer, and Chandra X-ray telescopes and includes eleven Tour Stops, where users can interact with areas like “the Brick”—a dense, dark cloud of hydrogen molecules imaged by Spitzer. Another Tour Stop zooms toward the supermassive black hole, Sagittarius A*, offering a dramatic visual journey to the galaxy’s core.
      In other tours, like the “Herbig-Haro 46/47” Tour, learners can navigate through points of interest in an observation from a single telescope mission. In this case, NASA’s James Webb Space Telescope provides the backdrop where lifelong learners can explore superheated jets of gas and dust being ejected at tremendous speeds from a pair of young, forming stars. The power of Webb turns up unexpected details in the background, like a noteworthy distant galaxy famous for its uncanny resemblance to a question mark. Each Interactive Image Tour allows people to examine unique features through videos, images, or graphical overlays to identify how those features have formed in ways that static images alone can’t convey.
      These tours, which include detailed visual descriptions for each Tour Stop, illuminate the science behind the beauty, allowing learners of all ages to develop a greater understanding of and excitement for space science, deepening their engagement with astronomy, regardless of their prior experience. Check out the About the Interactives page on the ViewSpace website for a detailed overview of how to use the Image Tours.
      ViewSpace currently offers three Image Tours, and the collection will continue growing:
      Center of the Milky Way Galaxy:
      Peer through cosmic dust and uncover areas of intense activity near the Milky Way’s core, featuring imagery from the Hubble Space Telescope, Spitzer Space Telescope, and the Chandra X-ray Observatory.
      Herbig-Haro 46/47:
      Witness how a tightly bound pair of young stars shapes their nebula through ejections of gas and dust in an image from the James Webb Space Telescope.
      The Whirlpool Galaxy:
      Explore the iconic swirling arms and glowing core of a stunning spiral galaxy, with insights into star formation, galaxy structure, and more in a Hubble Space Telescope image.
      “The Image Tours are beautiful, dramatic, informational, and easy to use,” explained Sari Custer, Chief of Science and Curiosity at Arizona Science Center. “I’m excited to implement them in my museum not only because of the incredible images and user-friendly features, but also for the opportunity to excite and ignite the public’s curiosity about space.”
      NASA’s Universe of Learning is supported by NASA under cooperative agreement award number NNX16AC65A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      Select views from various Image Tours. Clockwise from top left: The Whirlpool Galaxy, Center of the Milky Way Galaxy, Herbig-Haro 46/47, detail view in the Center of the Milky Way Galaxy. Share








      Details
      Last Updated May 13, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Astrophysics For Educators Explore More
      5 min read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora


      Article


      1 day ago
      2 min read Hubble Comes Face-to-Face with Spiral’s Arms


      Article


      4 days ago
      7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Artemis II crew members, shown inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, stand in front of their Orion crew module on Aug. 8, 2023. Pictured from left are CSA (Canadian Space Agency) astronaut Jeremy Hansen, and NASA astronauts Victor Glover, Reid Wiseman, and Christina Koch.Credit: NASA/Kim Shiflett NASA will host a live Twitch event to highlight the ongoing Moon Mascot Challenge, which invites the public to design a zero gravity indicator for the agency’s Artemis II crewed test flight around the Moon. Viewers will have the opportunity to provide real-time input to an artist who will create an example of a zero gravity indicator during the livestream. 
      Zero gravity indicators are small, plush items carried aboard spacecraft to provide a visual indication of when the crew reaches space.
      The event will begin at 3 p.m. EDT on Tuesday, May 13, on the agency’s official Twitch channel:
      https://www.twitch.tv/nasa
      The contest invites global creators of all ages to submit design ideas for a zero gravity indicator that will fly aboard the agency’s Artemis II test flight, the first crewed mission under NASA’s Artemis campaign.
      Up to 25 finalists, including entries from a K-12 student division, will be selected. The Artemis II crew will choose one design that NASA’s Thermal Blanket Lab will fabricate to fly alongside the crew in the Orion spacecraft.
      During this Twitch event, NASA experts will discuss the Moon Mascot Challenge while the artist incorporates live audience feedback into a sample design. Although the design example will not be eligible for the contest, it will demonstrate how challenge participants can develop their own zero gravity indicator designs. The example will be shared on the @NASAArtemis social media accounts following the Twitch event.
      The Artemis II test flight will take NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen on a 10-day journey around the Moon and back. The mission is another step toward missions on the lunar surface to help the agency prepare for future human missions to Mars.
      To learn more about NASA’s missions, visit:
      https://www.nasa.gov
      -end-
      Rachel Kraft
      Headquarters, Washington
      202-358-1600
      rachel.h.kraft@nasa.gov
      Share
      Details
      Last Updated May 12, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Artemis 2 Earth's Moon Exploration Systems Development Mission Directorate Social Media View the full article
  • Check out these Videos

×
×
  • Create New...