Jump to content

NASA Stennis Powers Nation’s Space Efforts – Past, Present, Future


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.

 An aerial image from 1965 supporting space efforts shows the dual flame trenches of the Thad Cochran Test Stand (B-1/B-2) under construction
An aerial image from 1965 shows the dual flame trenches of the Thad Cochran Test Stand (B-1/B-2) under construction at NASA’s Stennis Space Center (then known as Mississippi Test Operations) taking shape.
NASA/Stennis

Since the United States sent the first humans to the Moon more than 60 years ago, NASA’s Stennis Space Center near Bay St. Louis, Mississippi, has answered the call to help power the nation’s space dreams.  

“History shows NASA Stennis is the country’s premier rocket engine test site and the go-to place for propulsion testing,” NASA Stennis Director John Bailey said. “It started with Apollo and continued through space shuttle. Now, we are going back to the Moon and beyond with Artemis – and it all comes through NASA Stennis.” 

As the nation raced to send the first humans to the Moon, NASA selected a remote location in Hancock County, Mississippi, in October 1961 to test the needed rocket stages. Thanks to a massive construction project, the site conducted its first Saturn V rocket stage test in April 1966. In the next four-plus years, NASA Stennis tested 27 Saturn V stages, including those that launched 12 astronauts to walk on the Moon.  

“Talking to people working here during those years, you hear how much they believed in the mission,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “Their hard work helped America reach the Moon and showed us the possibilities for NASA Stennis.”   

As Apollo missions neared an end, plans were underway to drastically reduce the NASA Stennis footprint. Enter the space shuttle. NASA considered three locations to test engines for its new reusable vehicle before selecting NASA Stennis on March 1, 1970, ensuring the center’s future for the next several decades.  

Space shuttle main engine testing proved challenging as the site transitioned from handling full rocket stages to firing single engines. “A big part of the challenge was the fact that teams were testing an entire engine from the very start,” NASA Test Operations Chief Maury Vander said. “Typically, you begin testing components, then progress to a full engine. Teams had a lot to learn in real time.” 

NASA Stennis teams also tested the shuttle Main Propulsion Test Article with three engines firing simultaneously. The testing was particularly critical given the first shuttle mission would carry astronauts. 

NASA Stennis teams worked diligently to demonstrate the shuttle system would operate safely, an effort characterized as one of the site’s finest hours. Following the first shuttle mission in 1981, astronauts Robert Crippen and John Young visited the south Mississippi site. “The effort that you contributed made it possible for us to sit back and ride,” Crippen told NASA Stennis employees. 

From 1975 to 2009, NASA Stennis tested every main engine to help power 135 shuttle missions that enabled historic missions, such as those that deployed and repaired the Hubble Space Telescope and assembled the International Space Station, enabling its many scientific experiments and spinoff technologies. The site also tested every engine and component upgrade and helped troubleshoot performance issues. It led test campaigns following shuttle accidents to help ensure safe returns to flight. In total, the site conducted 2,307 tests for 820,475.68 seconds of accumulated hot fire. 

Even as NASA Stennis tested main engines to power shuttle missions, the site led in testing next-generation engines, including the Fastrac, XRS-2200 linear aerospike, and J-2X. It also developed its E Test Complex, with multiple test stands and cells, to support a range of component and engine test projects, including those of commercial aerospace companies.

A landmark agreement between NASA Stennis and Aerojet Rocketdyne (now known as L3Harris) in 1998 marked the site’s first test partnership with such a company. “That was the starting point,” said Vander. “Today, we are a preferred partner for multiple companies and test projects, large and small.” 

NASA Stennis also is testing RS-25 engines and related systems to help power NASA’s SLS (Space Launch System) rocket on Artemis missions to the Moon. When the agency travels to Mars, it is expected the missions will launch with engines tested at the Mississippi site as well. 

“The Gulf Coast of Mississippi helped achieve our space dreams of the past, and NASA Stennis continues supporting today’s dreams,” Bailey said. “It is a true testament to the expertise and dedication of our entire team and the incredible support of surrounding communities and the whole state.” 

For information about NASA’s Stennis Space Center, visit: 

Stennis Space Center – NASA 

Share

Details

Last Updated
Nov 13, 2024
Editor
NASA Stennis Communications
Contact
C. Lacy Thompson
Location
Stennis Space Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      In 1992, Dr. Gregory Rogers a NASA flight surgeon and former Chief of Aerospace Medicine witnessed an event that would stay with him for more than three decades. Now, after years of silence, he’s finally revealing the details of a 15-minute encounter that shattered everything he thought he knew about aerospace technology. 

      With a distinguished career that includes support for 31 space shuttle launches, training as an F-16 pilot, and deep involvement in classified aerospace programs, Dr. Rogers brings unmatched credibility to the conversation. His firsthand account of observing what appeared to be a reverse-engineered craft, emblazoned with "U.S. Air Force" markings, raises profound questions about the true timeline of UAP development and disclosure. 
      The full interview spans nearly two hours. To help navigate the discussion, here’s a timeline so you can jump to the segments that interest you most. 
      00:00 Introduction and Dr. Rogers' Unprecedented Credentials 07:25 The 1992 Cape Canaveral Encounter Begins 18:45 Inside the Hangar: First Glimpse of the Craft 26:30 "We Got It From Them" - The Shocking Revelation 35:15 Technical Analysis: Impossible Flight Characteristics 43:40 Electromagnetic Discharges and Advanced Propulsion 52:20 The Cover Story and 33 Years of Silence 1:01:10 Why He's Speaking Out Now: Grush and Fravor's Influence 1:08:45 Bob Lazar Connections and Reverse Engineering Timeline 1:17:20 Flight Surgeon Stories: The Human Side of Classified Work 1:25:50 G-Force Brain Injuries: An Unreported Military Crisis 1:34:30 Columbia Disaster: When Safety Warnings Are Ignored 1:43:15 The Bureaucratic Resistance to Truth 1:50:40 Congressional Testimony and The Path Forward 1:58:25 Final Thoughts: Legacy vs. Truth
        View the full article
    • By Amazing Space
      LIVE - Earth From Space Views - Seen From The ISS
    • By NASA
      NASA has awarded a task order to Florida Power and Light of Juno Beach, Florida, to provide electric distribution utility service at the agency’s Kennedy Space Center in Florida.
      This is a fixed-price task order with an estimated value of $70 million over five years. The contract consists of a two-year base period beginning July 1, 2025, followed by a two-year and a one-year option period.
      Under the contract, the awardee will provide all management, labor, transportation, facilities, materials, and equipment to provide electric distribution utility service up to and including all meters across the spaceport.
      For more information about NASA Kennedy, visit:
      https://www.nasa.gov/kennedy
      -end-
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      View the full article
    • By Space Force
      The Department of the Air Force achieved 100% of its annual recruitment goal three months ahead of schedule, a testament to the enduring appeal of service and the effectiveness of modernized recruiting strategies.

      View the full article
    • By NASA
      The Roscosmos Progress 90 cargo craft approaches the International Space Station for a docking to the Poisk module delivering nearly three tons of food, fuel, and supplies replenishing the Expedition 72 crew. Credit: NASA NASA will provide live coverage of the launch and docking of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies to the Expedition 73 crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 92 spacecraft is scheduled to launch at 3:32 p.m. EDT, Thursday, July 3 (12:32 a.m. Baikonur time, Friday, July 4), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live launch coverage will begin at 3:10 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day, in-orbit journey to the station, the spacecraft will dock autonomously to the space-facing port of the orbiting laboratory’s Poisk module at 5:27 p.m. on Saturday, July 5. NASA’s rendezvous and docking coverage will begin at 4:45 p.m. on NASA+.
      The Progress 92 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      Ahead of the spacecraft’s arrival, the Progress 90 spacecraft will undock from the Poisk module on Tuesday, July 1. NASA will not stream undocking.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
      Learn more about the International Space Station, its research, and crew, at:
      https://www.nasa.gov/station
      -end-
      Jimi Russell
      Headquarters, Washington
      202-358-1100
      james.j.russell@nasa.gov  
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jun 30, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
  • Check out these Videos

×
×
  • Create New...