Jump to content

Interview with OCEANOS Instructor Samuel Suleiman


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A Puerto Rican man with a bushy white beard, green bucket hat, teal longsleeve shirt, and black shorts gestures to a group of high school students wearing neon orange shirts.
Samuel Suleiman, an instructor for the OCEANOS internship, teaches students about sargassum and shore ecology on Culebra Island, Puerto Rico, during the fieldwork section of the project. Suleiman is also the Executive Director of Sociedad Ambiente Marino: a Puerto Rican NGO that works in conservation and coral reef restoration.
NASA ARC/Milan Loiacono

What is your name and your role with OCEANOS?

My name is Samuel Suleiman and I am the Executive Director of Sociedad Ambiente Marino: an NGO in Puerto Rico that has been working for the last 25 years to conserve our coastline and our reefs. During the OCEANOS internship, I am one of the Co-PIs (a co-instructor) for the project, and I’m in charge of the marine ecosystem in Culebra Island.  

What is the importance of a program like OCEANOS, especially in Puerto Rico?

The OCEANOS internship is pretty important for those students that don’t have the opportunity to go directly to our natural resources. Puerto Rico is an archipiélago – an island surrounded with other small islands  – and most of the population that we have on the island doesn’t appreciate or understand or protect our resources, because they haven’t had the opportunity to learn about it. OCEANOS provide this experience for these kids and also allows them to grow in different areas; not just in the in the lectures and the information and the marine science data, but also about working together as collaborators.

What are some ways you’ve seen the students grow over the course of the internship?

They have become more confident in the water compared to where we started, and they have start collaborating amongst themselves in their different research groups. They have also been changing their minds and attitudes, [which is] what we need for a better Puerto Rico and a better world.

How did you get into science?

I started in science because I wanted to be a pediatrician when I was a kid. I started in the Natural Science College at the University of Puerto Rico, then I changed to education in science. And I try to mix together my experience from the past: I almost drowned when I was five years old. Instead of paralyzing myself with fear of the water, I tried to explore, and I have been exploring since then; since I was five years old. Every time that I have the opportunity, I learn something new from the ocean.

What is something that has been rewarding about working with these students?

I think that we have to create a new kind of people that protect our resources. People that are willing to take what is needed to make a better world, and a better Puerto Rico.

What is something you hope the students take with them after this program?

I hope they feel a sense of belonging with the ocean, our coastline, our beaches, our resources, our reefs, our marine ecosystems. And I hope they can be ambassadors of these places.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Portrait of Dave Des Marais Let’s start with your childhood, where you’re from, your family at the time, if you have siblings, your early years, and when it was that you became interested in what has developed into your career as an astrophysicist or research scientist?
      I was born in Richmond, Virginia in 1948, the youngest of four siblings – two brothers, a sister and myself. My father was a civil engineer for DuPont chemical company and designed HVAC systems for plants built in the late 30’s and early 40’s for the war effort. Our family moved around frequently back then, so my siblings and I were born in different states. When our father transferred to  DuPont headquarters in Wilmington, Delaware, we moved to nearby Kennett Square, Pennsylvania, about 30 miles southwest of Philadelphia. During my childhood, my participation in outdoor activities with the Boy Scouts and my motivation by excellent high school chemistry and physics teachers stimulated my interest in the natural sciences.
      I attended Purdue University in Indiana in part because Purdue had an excellent chemistry curriculum and because my second older brother, whom I had always admired, received his chemical engineering degree there. As an undergraduate, I was particularly fascinated by the periodic table of the elements and analytical chemistry. Experiences outside the classroom were also important.  I noticed that another student in my dormitory had a little miner’s carbide headlamp on his desk. He explored caves as a member of the Purdue Outing Club and invited me to join. When we took caving and climbing trips in southern Indiana, I developed a fascination with geology, particularly about how caves form and about rocks generally. This kindled my interest in geochemistry, which ultimately guided my choices of graduate school and career. Three factors led to my decision in 1970 to attend Indiana University. One was IU’s strong geology and geochemistry programs. I also wanted to remain as near as possible to Shirley, my future spouse. The third reason was to continue exploring caves!
      While at IU I indeed continued cave exploration. I joined the Cave Research Foundation (CRF), which maps caves and supports research in the national parks, particularly in Mammoth Cave, Kentucky, which is the longest cave in the world, with 250 miles of mapped passageways. My involvement with CRF deepened my interest in other aspects of geology and geochemistry.
      (left) Cave in the Guadalupe Mountains, NM (D. Des Marais, 1980). (right) Climbing the 510 ft.-pit in Ellisons Cave, GA (D. Des Marais, 1972) My NASA connection began when Dr. John Hayes became my graduate advisor in geochemistry. Hayes’ graduate dissertation had addressed organic compounds in meteorites. He was also involved with the Viking mission as a member of Klaus Bieman’s MIT research group, which created the mass spectrometer for the Mars Viking mission. I took Hayes’ class on mass spectrometry, and fortunately he liked my term paper! Soon after, I chose to do my dissertation with him on lunar sample analyses, focusing on carbon and other elements relevant to life. I first presented my work in 1972 at the third Lunar Science Conference, where I met Sherwood Chang, then chief of the Ames Exobiology branch. Sherwood was also investigating carbon and other elements in lunar samples. Sherwood, John, and others inspired me to continue in the space sciences.
      That’s an Interesting path because many of our researchers had a postdoc with somebody or attended a conference and met someone through that network and found their way to Ames that way.
      I then did a postdoctoral fellowship at UCLA with Dr. Isaac (Ian) Kaplan, whose biogeochemistry group also had analzed lunar samples. I continued developing methods for carbon isotopic analyses of very small samples. The carbon-13 to carbon-12 abundance ratios of molecules can offer clues about how they are formed. Isotopic measurements also help to identify contamination in meteorites and other extraterrestrial samples. Sherwood Chang wanted to create an isotope geochemistry laboratory in the Ames Exobiology Branch, and that led to my being hired at Ames in 1976.
      You mentioned contamination of the meteorites. Was it geo-contamination or contamination from elsewhere that concerned you?
      The basic analytical goal is to decipher the entire history of an extraterrestrial sample, starting with understanding the contents of an object when it was formed, which in most cases was billions of years ago. When an object was still in space, other events happened that altered its composition. But our major concern has been about what happens after a meteorite arrives here. Life has become so pervasive that its chemical ‘fingerprints’ are on virtually everything. It’s difficult to avoid these substances anywhere in the shallow Earth’s crust. Also, Earth is an inhospitable place for meteorites because its surface environments are relatively hot and moist compared to conditions in space. So our environment can alter the meteorites and add organic contamination.
      What has been your most interesting work here at Ames?
      I have had a near-unique opportunity to explore the biogeochemistry of carbon across a wide range of processes and environments that sustain our biosphere. I investigated the isotope geochemistry of carbon and nitrogen in lunar samples, meteorites, and oceanic basalts. Our molecular isotopic measurements of hydrocarbons in carbonaceous chondrites confirmed their extraterrestrial origins and provided clues about their synthesis. My measurements of mid-oceanic basalts and hydrocarbon gases in geothermal systems chracterized components from the mantle and from sedimentary organic carbon.
      Co-leading a field trip in Yellowstone National Park (2015) I participated in the Precambrian Paleobiology Research Group at U.C.L.A., led by Dr. J. W. Schopf. For example, we documented carbon isotopic evidence for the long-term evolution and oxygenation of Earth’s early environment. Later, I coordinated a long-term project to study the biogeochemistry of marine benthic microbial communities as modern analogs of Earth’s oldest known (>3 billion yr.-old) ecosystems. We characterized their enormous microbial diversity, their highly efficient harvesting of sunlight, their cycling of life-sustaining elements, and mechanisms for their fossilization in sedimentary rocks. These experiences, among others, informed me as I chaired the development of NASA’s Astrobiology Roadmaps in 2003 and 2008, and as I served as PI of Ames’ NASA Astrobiology Institute team from 1998 to 2014. These roles also informed my participation in NASA’s Mars Exploration Rover and Curiosity rover missions.
      Des Marais et al. with a microbial mat experiment in Baja California (2000) Now that you’ve described what your pursuit is, what your discipline or research interests are, how would you justify that to people who are not scientists as to why taxpayers should be funding this particular research for NASA?
      NASA’s research programs are uniquely positioned to explore and compare multiple planets, including Earth. All life depends critically upon interactions between organisms and the geological processes and climate of their host planet. My career has addressed these interactions in multiple ways. Studies such as these are important for understanding the future of life on Earth, and they also guide our search for evidence of life elsewhere and for planning human missions to other bodies in our solar system.
      A more specific answer to your question is that the public has been interested in any life on Mars. Searching for evidence of past or present life there requires environmental surveys and analyses to identify the most promising locations. NASA’s Viking mission illustrated why most of the Martian surface is really not suitable to look for evidence of life. At least 70% of the surface of Mars is clearly unsuitable, but the remaining more promising 30% is still a lot of territory. The surface area of Mars is equal to that of all the continents on Earth.  Much of my research has related to an assessment of habitability, namely, assessing the resources that an environment must provide to sustain life. Where are the best places to look? Our rovers have now visited places that we are convinced could have supported life some three or more billion years ago. The next questions are:  did any fossils survive and can we actually bring the right samples back to Earth to confirm any findings? 
      Also, could a human mission sustain itself there? Again, we must look for resources that might support life today. Geochemical analyses are a key aspect of that search. If we have any future interest in Mars related to astrobiology or to human missions, we need to assess the past habitability and the present life-sustaining resources of potential landing sites. The public generally supports these exploration goals.
      They do, that is true, and that’s really the answer to why NASA does what it does. It’s directed by Congress, and they are influenced by the public, by what the public wants. I’ve always thought, or at least for a long time, that robotic exploration is much more practical, but the country wants astronauts, that’s where the public support is.
      I agree totally!
      And so, we continue to do that, and they’ve done wonderful things. But the time will come when it’s not feasible to do astronautic things because we humans don’t live long enough given the distances involved.
      Certainly that’s applies for destinations beyond our solar system. And even if there is a human mission to Mars, astronauts are going to be in a station, with robots going out in all directions. So robots will be with us in many ways for the future.
      It’s a very fascinating career you’ve described and the work that has followed from it.
      Thanks! It’s certainly been very fulfilling personally.
      What advice might you give to a young person who sees what you’re doing, is intrigued by it, and would like to pursue it as a career, would like to become a researcher for NASA?
      The advice I would give a young person is just engage in multiple experiences. You don’t know what what will stimulate and motivate you until you try it. And once you find something in particular, like astrobiology, then apply to institutions, like universities or institutes that are involved. Go to a place where they’re doing stuff that’s related to astrobiology in some way. Secondly, see if you can get yourself in a lab and get some undergraduate research experience.
      As an example, what worked for my son? He’s not in astrobiology. He went to Berkeley as an undergraduate and wanted to be a physician. But then he had an opportunity to work in someone’s plant biology lab. By the time he was applying for graduate schools he was identifying professors with whom he might want to work.  Now, years later, he’s a professor in plant genetics at a major university. When I applied to graduate schools, my approach wasn’t nearly as rigorous as my son’s strategy! So, perhaps get an undergraduate experience in a lab and, in any case, get a sense of what’s interesting by giving yourself multiple experiences and not necessarily focusing too soon. That’s the most general advice.
      That is similar to what parents do with their children. They don’t know what their children are going to be interested in or would do well, so they expose them to music, to art, and to all kinds of things and with some of them there won’t be any connection, but at some point, they’ll be interested in something and want to pursue it. So, you’re right, get a broad exposure to a variety of things and something will resonate.
      Yes, the more experiences, the better chance you might hit something that really resonates for you.
      You’ve talked about your professional work and research interests but what do you do for fun?
      Well, along with a lot of the things I’ve already described, my interest in the outdoors has always been high. Our family has done a lot of hiking and travel.
      Do you still do caving or spelunking?
      I was still active after joining Ames in 1976. I got CRF involved at Sequoia-Kings Canyon National Park, and CRF is still working there. I’ve been fortunate to participate in this collaboration between CRF and the National Park Service at Mammoth Cave, Kentucky, Carlsbad Caverns, New Mexico, and Sequoia-Kings Canyon National Park, California. My active participation tapered off about the same time my involvement with Mars picked up in the 1990’s.
      Earlier, I mentioned a little miner’s carbide cap lamp in another student’s dormitory room that led me to the Outing Club, geology, and ultimately my career. So, over the years I’ve collected artifacts related to mining and interacted with folks who explore the history of mining and its economic importance. That has made me realize just how difficult were the lives of miners. What I hadn’t anticipated was how grateful I became that I am alive today and not 100+ years ago, or that I live in the US and not many other places today.
      I often feel that. There are a lot of places in the world where you can’t just go over to the wall and dial up the temperature you want. We are certainly blessed in that regard. So, the collecting has been kind of a hobby for you. Do you have any musical interest or talent, anything like that?
      I was pretty proficient at the piano until I got into high school. But I took up the saxophone and got into the high school band. Later, I joined the Purdue Marching Band and played at football games. That was a great experience but I didn’t continue beyond my college sophomore year. My daughter and son have continued on piano intermittently as an effective form of relaxation. This reminds me of Carl Pilcher (former NASA Senior Scientist for Astrobiology and Director of the NASA Astrobiology Institute) who was a really good pianist.
      I didn’t know that and that’s interesting to me because I knew Carl. This is one reason why we do these interviews, because there will be a number of people who will read this and they won’t have known that about Carl if they knew him, and that’s how these little things that we don’t know about people come out as we sit down and talk with each other. You’ve mentioned your wife, Shirley, and your son and your daughter.  Would you like to say anything else about your family? Or your pets, or things you like to do together or vacations, anything like that?
      Shirley and I have been married 54 years as of this interview. She was an elementary school teacher for more than 25 years. Her support was crucial while I was in graduate school. She became a full-time parent for our pre-school children but then returned to Redwood City schools for most of her teaching career. She then became deeply involved in the local chapter of the League of Women Voters, serving both as its chairman and in other leadership positions. Shirley is the keystone of our family and she has enabled my career achievements immeasurably.
      Our son is a is a molecular biologist. He went to Berkeley first aspiring to be a doctor probably because his high school biology teacher emphasized human physiology. At Berkeley he ventured from one interest to the next. He had not been inspired by plant biology in high school, probably because his teachers focused on rote memorization of facts. But later he gained research experience in a Berkeley plant lab and got really interested in them. He attended graduate school at Duke University and is now an assistant professor in plant genetics with the MIT civil engineering  department. Why, you ask, is a civil engineering department interested in plant genetics? MIT started a major climate change project and one key concern is how crops must adapt.  His specialty is plant water use efficiency, response to CO2 levels, and temperature, factors that would be affected by a changing climate.
      Des Marais family in Yellowstone National Park (2001) Our daughter also attended Berkeley. She studied international economics of developing countries. She is good at math and also interested in social issues, so that curriculum motivated her. But her ultimate career choice arose from the focus on developing countries and her experiences in South America when she spent a semester at a university in Chile, and then worked with nonprofit organizations in Brazil. She then got a master’s degree in public health at the University of North Carolina.  She’s still involved in public health in North Carolina, working with a foundation that advises county health departments about treatments for drug addiction. The government has provided funds for counties, especially rural counties. She leads a group that’s advising them on how to administer these funds effectively.
      That’s very commendable. You should be proud of her as well.
      Yeah, we certainly are.
      We also had cats from the early ‘70’s up until maybe 2010 or something like that. We eventually achieved ‘parental freedom’ when the kids moved away and the pets passed away.  But our our family’s legacy lives on: both our son and our daughter have multiple cats in their houses! (laughs)
      We had cats too, and enjoyed them. My wife used to have to go away for a week or so every month to tend her parents, who were getting elderly, because she wanted to keep them in their home. I used to think it was funny that people talked to their pets, but when she was away, I talked to the cat all the time! I really enjoyed having her around. She would curl up on my lap if I was watching TV. She was good company.
      Yeah, no kidding. Dogs especially are like little kids that never grow up!
      Yes!
      One of the questions we like to ask is who or what has inspired you along your life path?
      My high school chemistry teacher inspired me about chemistry. He was also an outdoorsman type. My older brother was involved in Boy Scouts, and that also nurtured my interest in Scouts and the outdoors.
      At the time I was enrolled at Purdue University, a geology department had recently started and three faculty occupied the basement of an engineering building. Dr. Levandowski advocated that geochemistry might actually be a good match for me. At Indiana University, John Hayes, my thesis advisor, was very accomplished, charismatic, and inspirational. He was recognized internationally and ultimately inducted into the National Academy of Sciences. And, of course, Sherwood Chang and Chuck Klein helped inspire and guide my early career at Ames.
      Do you read for pleasure and if so, what do you like to read? What genre do you enjoy?
      I do not read fiction for pleasure.  I frequently read popular science and technology articles, so I guess that’s my pleasure reading. It’s still science, but it’s science that extends well beyond my own work, and I find that interesting.
      Absolutely it is.  I don’t read enough for pleasure. I buy a lot of books that I intend to read, but I just never get around to them. My wife says, in jest I think, when I’m gone, she’s going to have a big bonfire and burn all of them because they take up a lot of space. I would like to live to be 200 and read all of them, but I know I won’t! (laughs)
      One of the things that we like to do is add pictures to these interviews, of things we talked about, or any images that you particularly like.  What picture might you have on the wall there in your office, or perhaps in your home?  You could add something later after thinking about it a bit.  I had a map of the world, a satellite image of the world at night, in my office for a time. You’ve probably seen it. I was fascinated by it because you could tell so much about the countries by the lighting, the different colors, where it was and where it wasn’t.
      I have a big map of the world that emphasizes geology and particularly shows a lot of details about the ocean floor, especially with the volcanoes and all the features there. And you’ve probably seen the exobiology mural? it was in building N-200.
      I think I know which one you’re talking about. It has sea life coming up from the ocean on one side across the land and up to the stars on the other side.
      Exobiology panorama (D. Des Marais, L. Jahnke, T. Scattergood, 1988) That’s right. Linda Jahnke, Tom Scattergood, and I created that back in 1980’s.
      You did?
      Yeah. When the art department made copies, I got one for my office, and several others have copies also.
      Oh, that’s wonderful. If you have an image of that you could include it when you send me back your edited transcript, and we could put it in and attribute it to you, Linda, and Tom.
      OK. That mural touches on several research topics I’ve addressed during my career. So, it would be a good one to include.
      We also ask if there is a favorite quote that has been particularly meaningful to you. We can put that in, too.
       ‘Life is what happens while you are busy making other plans’ (John Lennon)
      ‘We make a living by what we get, but we make a life by what we give.’ (the attribution to Winston Churchill is controversial)
      Thank you for getting in touch with me and for sitting down for an hour to do this. I will get this into a format where you can edit it. And then we’ll make a post out of it. And I think you’ll be pleased. And if not, you’ll have only yourself to blame! (laughs)
      That’s very cagey of you! (laughs) But then again, you’ve done this for quite a while.
      Your approach is quite sophisticated, so I appreciate that. I also appreciate your effort because so often stuff like this just disappears from history.
      Well, thank you, Dave. I’ve appreciated the chat and thank you for your time. We’ll make something out of it.
      Thanks for your commitment and for pursuing me to do this. Take care.
      You’re welcome.
      ________________________________________________
      Interview conducted by Fred Van Wert on January 13, 2025
      View the full article
    • By NASA
      9 min read
      Interview with Michiharu Hyogo, Citizen Scientist and First Author of a New Scientific Paper
      Peer-reviewed scientific journal articles are the bedrock of science. Each one represents the culmination of a substantial project, impartially checked for accuracy and relevance – a proud accomplishment for any science team. 
      The person who takes responsibility for writing the paper must inevitably and repeatedly  write, edit, and rewrite its content as they receive comments and constructive criticism from colleagues, peers, and editors. And the process involves much more than merely re-writing the words. Implementing feedback and polishing the paper regularly involves  reanalyzing data and conducting additional analyses as needed, over and over again. The person who  successfully climbs this mountain of effort can then often earn the honor of being named the first author of a peer-reviewed scientific publication. To our delight, more and more of NASA’s citizen scientists have taken on this demanding challenge, and accomplished this incredible feat.
      Michiharu Hyogo is one of these pioneers. His paper, “Unveiling the Infrared Excess of SIPS J2045-6332: Evidence for a Young Stellar Object with Potential Low-Mass Companion” (Hyogo et al. 2025) was recently accepted for publication in the journal Monthly Notices of the Royal Astronomical Society. He conceived of the idea for this paper, performed most of the research using of data from NASA’s retired Wide-field Infrared Survey Explorer (WISE) mission, and submitted it to the journal. We asked him some questions about his life and he shared with us some of the secrets to his success.
      Q: Where do you live, Michi?
      A: I have been living in Tokyo, Japan since the end of 2012. Before that, I lived outside Japan for a total of 21 years, in countries such as Canada, the USA, and Australia.
      Q: Which NASA Citizen Science projects have you worked on?
      A: I am currently working on three different NASA-sponsored projects: Disk Detective, Backyard Worlds: Planet 9, and Planet Patrol.
      Q: What do you do when you’re not working on these projects?
      A: Until March of last year, I worked as a part-time lecturer at a local university in Tokyo. At the moment, I am unemployed and looking for similar positions. My dream is to work at a community college in the USA, but so far, my job search has been unsuccessful. In the near future, I hope to teach while also working on projects like this one. This is my dream.
      Q: How did you learn about NASA Citizen Science?
      A: It’s a very long story. A few years after completing my master’s degree, around 2011, a friend from the University of Hawaii (where I did my bachelor’s degree) introduced me to one of the Zooniverse projects. Since it was so long ago, I can’t remember exactly which project it was—perhaps Galaxy Zoo or another one whose name escapes me.
      I definitely worked on Planet Hunters, classifying all 150,000 light curves from (NASA’s) Kepler observatory. Around the time I completed my classifications for Planet Hunters, I came across Disk Detective as it was launching. A friend on Facebook shared information about it, stating that it was “NASA’s first sponsored citizen science project aimed at publishing scientific papers”.
      At that time, I was unemployed and had plenty of free time, so I joined without giving much thought to the consequences. I never expected that this project would eventually lead me to write my own paper — it was far beyond anything I had imagined.
        
      Q: What would you say you have gained from working on these NASA projects?A: Working on these NASA-sponsored projects has been an incredibly valuable experience for me in multiple ways. Scientifically, I have gained hands-on experience in analyzing astronomical data, identifying potential celestial objects, and contributing to real research efforts. Through projects like Disk Detective,Backyard Worlds: Planet 9, and Planet Patrol, I have learned how to systematically classify data, recognize patterns, and apply astrophysical concepts in a practical setting.
      Beyond the technical skills, I have also gained a deeper understanding of how citizen science can contribute to professional research. Collaborating with experts and other volunteers has improved my ability to communicate scientific ideas and work within a research community.
      Perhaps most importantly, these projects have given me a sense of purpose and the opportunity to contribute to cutting-edge discoveries. They have also led to unexpected opportunities, such as co-authoring scientific papers — something I never imagined when I first joined. Overall, these experiences have strengthened my passion for astronomy and my desire to continue contributing to the field.
      Q: How did you make the discovery that you wrote about in your paper?
      A: Well, the initial goal of this project was to discover circumstellar disks around brown dwarfs. The Disk Detective team assembled more than 1,600 promising candidates that might possess such disks. These objects were identified and submitted by volunteers from the same project, following the physical criteria outlined within it.
      Among these candidates, I found an object with the largest infrared excess and the fourth-latest spectral type. This was the moment I first encountered the object and found it particularly interesting, prompting me to investigate it further.
      Although we ultimately did not discover a disk around this object, we uncovered intriguing physical characteristics, such as its youth and the presence of a low-mass companion with a spectral type of L3 to L4.
      Q: How did you feel when your paper was accepted for publication?
      A: Thank you for asking this question—I truly appreciate it. I feel like the biggest milestone of my life has finally been achieved!
      This is the first time I genuinely feel that I have made a positive impact on society. It feels like a miracle. Imagine if we had a time machine and I could go back five years to tell my past self this whole story. You know what my past self would say? “You’re crazy.”
      Yes, I kept dreaming about this, and deep down, I was always striving toward this goal because it has been my purpose in life since childhood. I’m also proud that I accomplished something like this without being employed by a university or research institute. (Ironically, I wasn’t able to achieve something like this while I was in grad school.)
      I’m not sure if there are similar examples in the history of science, but I’m quite certain this is a rare event.
      Q: What would you say to other citizen scientists about the process of writing a paper?
      A: Oh, there are several important things I need to share with them. 
      First, never conduct research entirely on your own. Reach out to experts in your field as much as possible. For example, in my case, I collaborated with brown dwarf experts from the Backyard Worlds: Planet 9 team. When I completed the first draft of my paper, I sent it to all my collaborators to get their feedback on its quality and to check if they had any comments on the content. It took some time, but I received a lot of helpful suggestions that ultimately improved the clarity and conciseness of my paper.
      If this is your first time receiving extensive feedback, it might feel overwhelming. However, you should see it as a valuable opportunity—one that will lead you to stronger research results. I am truly grateful for the feedback I received. This process will almost certainly help you receive positive feedback from referees when you submit your own paper. That’s exactly what happened to me.
      Second, do not assume that others will automatically understand your research for you. This seems to be a common challenge among many citizen scientists. First, you must have a clear understanding of your own research project. Then, it is crucial to communicate your progress clearly and concisely, without unnecessary details. If you have questions—especially when you are stuck — be specific.
      For example, I frequently attend Zoom meetings for various projects, including Backyard Worlds: Planet 9 and Disk Detective. In every meeting, I give a brief recap of what I’ve been working on — every single time — to refresh the audience’s memory. This helps them stay engaged and remember my research. (Screen sharing is especially useful for this.) After the recap, I present my questions. This approach makes it much easier for others to understand where I am in my research and, ultimately, helps them provide potential solutions to the challenges I’m facing.
      Lastly, use Artificial Intelligence (AI) as much as possible. For tasks like editing, proofreading, and debugging, AI tools can be incredibly helpful. I don’t mean to sound harsh, but I find it surprising that some people still do these things manually. In many cases, this can be a waste of time. I strongly believe we should rely on machines for tasks that we either don’t need to do ourselves or simply cannot do. This approach saves time and significantly improves productivity.
      Q: Thank you for sharing all these useful tips! Is there anything else you would like to add?
      A: I would like to sincerely thank all my collaborators for their patience and support throughout this journey. I know we have never met in person, and for some of you, this may not be a familiar way to communicate (it wasn’t for me at first either). If that’s the case, I completely understand. I truly appreciate your trust in me and in this entirely online mode of communication. Without your help, none of what I have achieved would have been possible.
      I am now thinking about pushing myself to take on another set of research projects. My pursuit of astronomical research will not stop, and I hope you will continue to follow my journey. I will also do my best to support others along the way.
      Share








      Details
      Last Updated Mar 18, 2025 Related Terms
      Citizen Science Astrophysics Explore More
      5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet


      Article


      1 day ago
      5 min read NASA’s Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide


      Article


      2 days ago
      2 min read Hubble Sees a Spiral and a Star


      Article


      5 days ago
      View the full article
    • By NASA
      I’m really pleased that you agreed to take advantage of this opportunity.  I don’t recall if I have actually met you personally,  but if so, then I apologize for not remembering.
      I don’t think so, although you’ve certainly signed things for me.
      Well, I guess I have because I do remember seeing your name from time to time on various things. You’ve been at Ames a long time and we’ll have you talk about that in a little bit. The focus of these interviews is not specifically on your work. In fact, it was intended to broaden people’s understanding of who you are and what you do when you’re not at work, because we get compartmentalized and mostly get to know people through our work interactions, so we’ll be touching on your other interests. As you’ve seen if you’ve read some of these, we generally start with your childhood. I try to look up bios and things like that ahead of time to see what I can glean before these interviews but you don’t have a very substantial presence on the web.
      I’m not a very public person.
      I did find that out (laughs).
      I did not volunteer for these and I tried to lay low until you hunted me down! (laughs)
      Well, I think you’ll be pleased and as I said, you can stay as private as you want during this whole interview.
      Sounds good.
      We like to start with where you were born, your family at the time, what your parents did, if you have siblings, and then we ask when became aware of or developed an interest in what you have pursued as a career.
      OK, and I’m going to be looking sideways at my notes because I printed out your list of questions and thought about them. Hopefully I won’t mess it up too much. I’m a big believer in the written word. I was born in Oakland, just up the Bay.
      So was I, so we have a connection right there!
      Up through my preteen years I grew up split between Oakland and North Lake Tahoe. My dad was a masonry contractor. When school got out in June we would go up to Tahoe where there was lots of work for him, building foundations for homes and so forth. When Christmas break came in school, we came back down to Oakland. We had a home in both places and dad could get work in the winter in the Bay Area. In the middle of every year during my preteen years, I switched between two schools. It was usually a bit of a jolt because the Oakland schools were ahead of the Tahoe schools, so there were a couple weeks of flailing about in January trying to catch up. They all used the same textbooks, but we were a couple of chapters behind at that point and had to catch up.
      When I was 12, Dad had established his business well enough at Tahoe that my parents sold both of the houses, built a somewhat bigger one, and we moved to Tahoe permanently. So from seventh grade through high school it was all at the northern end of Lake Tahoe.
      I have one sibling, a brother.
      And when did I start thinking about becoming an astronomer? I can’t remember exactly, to be perfectly honest. I do remember my parents showing me the constellations. I can remember specifically which constellations my dad showed me and which ones my mom showed me. I can’t remember a time when I wasn’t interested primarily in being an astronomer, but I probably went through an astronaut phase because it was the ‘60’s!  I got an astronomy book for my birthday one year and I know it was before I could really read and understand it. I remember looking at the pictures. In thinking about this interview, I went back and looked.  That book was published when I was five, so probably by the time I was five I was talking about it enough that I got this book for my birthday. I don’t have any similar books on other topics from that time. All the other books I have from back then are astronomy books for kids.
      Well, you were living in Lake Tahoe, which by the elevation and the clarity and lack of ambient lights around you would have had a really good view of the stars and constellations.
      Right. It was great. Although before we moved up there full time we were mostly there in the summer, so it didn’t get dark until after my bedtime.  When we moved up there full time, then I could go out in the winter and yeah, we had a spectacular view of the southern sky. There were woods but we could see over the trees. We could see the center of the Milky Way, and so forth. I had binoculars and a couple of small telescopes that I’d use, along with a star atlas to point me toward interesting things to look at.
      Did you say what your mother did? Did she work outside the home?
      Mom was a writer.  We traveled each year when we were growing up. She would write travelogues of those trips and try to get them published. She also wrote haiku poetry, and she tried her hand at writing other things. She was published a bit, but not a whole lot. Mom did get one of her travelogues published in the Christian Science Monitor. That was a highlight for her.
      And was your brother older or younger?
      My brother is two years younger, and we had somewhat similar trajectories.  We’ll get to education later but he majored in physics as well. He followed me in similar universities, but ended up going into material sciences. He is now on the East Coast working for IBM.
      That’s great.
      He was named a Master Inventor in 2018.
      A what?
      A Master Inventor. He has over 200 patents, so IBM honored him with this title.
      That’s quite an honor!  Your education was interesting because of the split between the two schools.  But then at some point, when you went to college, you had to declare a major. You said you had already developed an interest in astronomy, so did you pursue that science discipline right off the bat?
      I went to UC Riverside for two years, and then I transferred to Caltech. My freshman year  I really nailed down my choice for astronomy. I remember going to the Career Center and taking an interest survey, which has nothing to do with what you’re able to do. It just asks what you’re interested in doing, and it came up as physicist or musician.  I have no musical skills so that pointed me in the other direction. I thought briefly about geology, since my dad had been a geology major, but I really settled on astronomy at that point, which is why I transferred. Riverside didn’t have an astronomy major,  they only had a physics major. I really wanted to get an astronomy background and start on it early.
      My time at Caltech was probably the toughest two years I’ve ever had. I was behind because I had gone to Riverside for two years and the Caltech student body was extremely competitive. Caltech was not generous with their transfer credits. I ended up taking a very heavy course load, but I did make it out in two years. From there I applied to a number of grad schools. I settled on Cornell for a couple reasons: First of all because they had groups working in the areas  of astronomy I thought I was interested in, which were radio and infrared. Second of all, after four years in southern California I really wanted to go to a more rural setting to continue my education.
      I have to ask this because when we’ve interviewed others who have gone to Cornell, most of them have mentioned the influence of Carl Sagan and I just wondered if that figured into your choice, or was he gone by the time you went there?
      Well, I  did meet Carl, at a second year reception he threw for the grad students.  He was gone most of my first year working on Cosmos the television show. He had taken a leave of absence and wasn’t around. When he came back he threw a reception for all of us, and I got to shake his hand. He was a planetary scientist, of course, and that was not where I was aiming my trajectory.  I didn’t see him a whole lot other than that one reception. Although from time to time the kind of people you really don’t want wandering around the halls would come around the building looking for Carl Sagan. Security would chase them down and get them out. These are really my most distinct memories of Carl.
      And your PhD was in astronomy, not physics?
      It was in astronomy and my dissertation was on radio astronomy. I did it almost exclusively at Arecibo (Arecibo Observatory, National Astronomy and Ionosphere Center, Arecibo, Puerto Rico) with a little bit at the VLA (Very Large Array Radio Telescope facility, near Socorro, New Mexico). I got to work with some really smart people at Cornell, observational and theoretical.
      At this point we usually inquire about the connection or the influence, that brought you from your PhD to NASA Ames.
      My degree was in radio astronomy but the other interest I always had along the way, which I hadn’t been able to look into, was infrared astronomy. Getting post docs is very competitive, back then we called them NRC’s. The NRC offer from Ed Erickson’s group at Ames was the best offer, so I came out for that. It wasn’t a sure thing, there was back and forth and the highest rated candidate had to turn down the job before they would make me an offer.  But fortunately for me the highest rated candidate was my office mate at Cornell. I knew he was going to turn down the offer as soon as he got another one he wanted, so I was aware a little bit in advance of getting the call from Ed that things had worked out.
      And Ed was your advisor?
      Ed was my advisor. So I came and did two years as an NRC and then continued working with the group. I had made myself sufficiently useful that when I was ready to apply for other jobs, Ed offered me a raise if I’d stay with the group and continue working. That was a really good time. We flew on the KAO (Kuiper Airborne Observatory). They didn’t really have facility instruments, so we had our own instrument, but we did support observers from outside our group. We probably had more flights than any other instrument on the KAO during that period. It was a lot of flights. We had to operate it ourselves. All of us had our own particular jobs on flights. We did everything from prepping for the observations, writing proposals, all the way through to seeing them published. We were a small team: Ed Erickson, Mike Haas; Jan Simpson, and Bob Rubin on the science side helped out. We had a shop guy, Gene Beckstrom, and others after him.  We had a lab technician, Jim Baltz. Dave Hollenbach would also work with us, and that was very rewarding. He was a very sharp guy in terms of theory, ideas and projects to do. Here is a photo of some of us with our instrument rack getting ready for a KAO flight:
      Sean Colgan with his team on the KAO (Kuiper Airborne Observatory). So you came in on an NRC postdoctoral fellowship in the mid-‘80’s?
      Yes, I started on October 6th, 1986.
      And your first work was on the KAO and then probably a decade later you continued on SOFIA (Stratospheric Observatory for Infrared Astronomy)?
      It was ‘95 or ‘96 when they shut down the KAO to use the funding for SOFIA development. I remember the meeting still. It was in the upstairs auditorium and they came in and announced they were shutting the KAO down. I think it was Dave Morrison, who was the division chief, who told us not to whine about shutting it down because planetary missions sometimes had years when they didn’t have their facilities. In this case it was only going to be two years and we would be up and flying in 1997. Of course, as we know, it was more like ten years after that before we were even close to flying.
      Yes, I thought the same thing, that it was not going to be two years. It always takes longer than that.
      Well, I don’t think anybody thought it was going to be as many years as it was.
      But you flew on both the KAO and SOFIA?
      I had ninety nine flights on the Kuiper (KAO) because I kept track of them, and on SOFIA I had two flights, so I was not a flyer on SOFIA. It was more of a facility observatory, and the people who flew a lot were really part of the observatory. They were operating the telescope or operating a science instrument. My flights on SOFIA were because I had written some software for the GREAT Instrument (German Receiver for Astronomy at Terahertz Frequencies, a modular dual-color heterodyne instrument for high-resolution far-infrared spectroscopy) to help them interface with SOFIA. I was along on  those commissioning flights for GREAT in case my software broke. They wanted me on board. Interestingly by the rules at the time, I wouldn’t be allowed to actually fix the software in flight because it was flight software and had to go through all the reviews. None of the people who could do the reviews were on the airplane, but I could see how it broke and maybe I could suggest workarounds. It was not nearly as much fun for me as the KAO. I didn’t really have a job. The software had issues from time to time, but it basically worked. Everybody else had jobs, so for me it was less interesting, which is why I didn’t make a huge effort to keep flying on SOFIA.
      Did you stay on the SOFIA project as a somewhat non flying support person?
      Yes, from when the Kuiper stopped flying until about, well now, my primary work on SOFIA has been first with the project science team during development – trying to make sure they met our requirements, helping everybody understand our requirements, trying to make sure they weren’t making any huge mistakes. They made them anyway, especially when they didn’t listen to us, but we did our best. During the early years of SOFIA, I was also on the Ames team developing AIRES – a facility Science Instrument for SOFIA. I led the software effort, but the development was canceled in 2001. I then got involved with the software that people would use to propose to SOFIA, the proposal software, the software to estimate how long you should be asking for time, the sensitivity of the instruments, pieces of software like that. I worked with Dave Goorvich. We got software from other observatories as starting points and then modified them for SOFIA, software “re-use” they called it. And that was basically my main job throughout SOFIA’s lifetime. Once we developed those, the USRA (Universities Space Research Association) folks built their team around maintaining them and I joined that team because I’d been working on this software for so long. I also got into the package I mentioned to help GREAT interface to SOFIA. It basically made SOFIA look like the telescope that the GREAT team had been using for years, an observatory called KOSMA. We called it the translator and it translated KOSMA commands into SOFIA commands; then SOFIA housekeeping back into KOSMA housekeeping, so they didn’t need to change their software to work with SOFIA. As the aircraft started flying, it became quite clear that I was oversubscribed. I was not meeting my deadlines for either of those two efforts, so I gave up the translator. They hired another fellow to maintain that, although I stayed in touch with it for some years, helping him when he had questions and so forth. I then focused my main effort over on SOFIA’s DCS (Data Cycle System) side.              
      What has been your most interesting work here at Ames?
      I’d say it was flying on the KAO, but very specifically it was Supernova 1987A which occurred after I had been here for only a couple of months. It went off in February of 1987. Nobody really knew what it would look like in the infrared to an instrument on an observatory like the KAO, so it was obviously a huge deal since it was the closest supernova for hundreds of years.  Our team just completely redirected  to carry out observations of the supernova.  Dave Hollenbach and I worked together to try and figure out what we would see. We wrote up the science portion of the proposal,. For these observations, our instrument – the CGS (Cooled-Grating-Spectrometer) – had to be fairly substantially reworked in the sense that the grating needed to be changed to go to lower resolution and the detectors needed to be changed to get wider bandwidth and go to shorter wavelengths. Ed and Mike worked long days, weeks, and months to make all of those changes happen. In our proposal we made some predictions about which lines we could see, mostly iron lines, and which ionization states. We put that in the proposal, which was accepted. We then wrote up the proposal as a separate paper. When we went down and did the observations, we actually got some of it right. Surprisingly, iron was indeed bright. We thought we’d be seeing all different ionized states of iron, from singly, doubly, triply ionized iron, when in fact it was very much concentrated in singly ionized iron with a little bit of doubly ionized iron, there was a faint line there. We had gotten the temperatures right, but we didn’t quite get the ionization right. We were in the ballpark, so I think this was really the most interesting work in that when we started nobody had really seen anything like it before. We were starting from very basic principles, and we followed that all the way through to a nice series of papers. We went down for three different epochs because the lines were changing with time as the supernova ejecta expanded. We obtained three sets of measurements, which resulted in three papers.
      What I’m currently working on? Well, SOFIA is, of course, shut down and I am working as part of the shutdown process. We’re trying to reprocess a lot of the data to bring it up to standard, especially the older data. We learned more about the instruments as time went on, so we can now do a better job of reducing the data. I’m helping out with reducing the data, getting it into the archive as we shut down, and of course, writing proposals.
      What comes next? So far I’ve collaborated mainly with Naseem, whom you have spoken to, Sarah Nickerson, whom you also have spoken to, and Doug Hoffman (whom we’ve also spoken to). So that’s proposals.
      How is your work relevant to Ames and the NASA mission? 
      Well, I’ve worked on NASA missions almost my entire career, so I think that’s the closest to relevance as you can get.
      What is a typical day like for you?
      I mostly work, well before the pandemic in my office, but now it’s back and forth. I do like to come into the office although this week is a little different. That’s why we’re doing this interview from home. My wife is out of town and I like to work at home on those weeks just to keep the dog out of trouble. So I’m at a computer. I’m a software guy and a data analysis guy, not a lab guy, so I work at the computer. I actually have several computers on my desk. I look like a real developer (laughs). If you see my desk, I’ve got a couple of big screens and couple of computers underneath hooked up to different things and I can switch them around. So that’s a typical day, but at home it’s a little tougher. I don’t have a desk that can really manage the big screens, so I’ve just got one little laptop screen to work with.
      Is home close enough that the pandemic shut down of the Center didn’t really save you a whole lot of commute time?
      I live across the Bay in Newark, which physically is not far, but traffic wise is not good. I typically come in later and stay later because that works with my wife’s schedule and also works with the traffic. We’re not so close that it’s easy. I hated during the pandemic having to work at home all the time because of the small screen and with no room to spread out piles of paper or stay organized. That was definitely a challenge. I was very glad to get back on site.
      What do you like most and least about your job?
      Most would be doing science, but I also enjoy coding. Least is probably the standard sorts of things that most people whine about when given any opportunity.  All the stuff that goes with the job that isn’t science or coding, like IT security and paperwork. Right now I’m in the midst of training, taking courses I’ve taken every year for the last ten years, which gets a little old after a while, things like that. But somebody thinks you need to do it, and I hope it makes us a better organization for everybody doing it.
      Do you have a favorite memory from your career? Or perhaps a research finding or breakthrough, or an unexpected research result?
      My favorite memory would be the Supernova 1987A work in general. We found some unexpected things there and we got some things right.
      If you could have a dream job, what would it be?
      My dream job is pretty close to what I have. Pretty close without all the extra stuff.
      What advice would you give to someone who wants a career like yours?
      Of course you’ve got to work hard, and you need to have an aptitude for it. It’s a very competitive field, so you’ve also got to realize that luck, or being in the right place at the right time, can be a factor in whether you continue or not.  I’ve had colleagues who were very good at what they do, but they just weren’t in the right place at the right time. They ended up leaving the field or doing something less than what they hoped. Some things are just out of your control.
      I did get lucky. I was in the right place at the right time. I flew on the Kuiper, and I developed skills. When SOFIA started, those skills were very much in demand.  That was my right place, right time moment, which is when I joined the civil service.  I had been a contractor  after my NRC ended through 1997. I became a civil servant then because there was so much work on SOFIA. I don’t know if that’s  helpful advice, but it’s just my take on things.
      Well, you’re right. There’s something to being in the right place, at the right time and being prepared, but there’s always the serendipity aspect, which is just part of life. You could have wound up somewhere else and been just as happy, you know.
      Oh yes, It doesn’t necessarily relate to happiness, but you’ve got to make the best with what you have.  I do feel lucky about that.
      Would you like to share anything about your family? Kids, pets, activities? You mentioned a dog?
      I’m going to mix the order up a little bit.
      Sure, go ahead.
      The accomplishment I’m most proud of that’s not science related would be 40 years of marriage to my fabulous wife. We just celebrated our 40th anniversary about a week and a half ago.
      Congratulations! That is indeed an accomplishment.
      So, no children but we do have a dog, a little Welsh Corgi. She’s our second corgi and she is just great. We do enjoy traveling. Typically, we’ll go on vacation in August. often to Europe. We’ve visited the UK five or six times, France a couple of times, Italy a couple of times. My father-in-law was born in Hungary, so we’ve gone there a couple times. Here is a photo of us at Lake Louise in 2019, with our Corgi.
      Sean Colgan with his wife and Corgi at Lake Louise in 2019 What do we do for fun the rest of the time? Besides leisure travel, I enjoy gardening. We also enjoy musical events.  We have season tickets to the San Jose Opera, for example, and we’ll go up to San Francisco for concerts a couple of times a year. We probably have an event every other month.  During the pandemic, the restaurants and movie theaters were closed, but wineries with outdoor spaces were open.  They started serving food during the pandemic, and they allowed dogs, so we got in the habit of doing a lot of wine tasting on weekends just to get out. We still do some of that. To celebrate our 40th, we went up to Napa and tasted a lot of great wines. (laughs)
      You mentioned that you’re not particularly musical, so you don’t play an instrument or anything, but you enjoy music and opera.
      I enjoy listening to music. I played instruments as a child but had no particular talent for it, so. . . .
      Do you like to read? And if so, any particular genre?
      I read a fair bit, and it’s sort of divided. For entertainment, I’ll read fantasy and science fiction, but when we go on our trips, I’m always buying books about what we’re doing. For example, if we go to France and visit cathedrals, I’ll buy books about how they built cathedrals; or in England I’ll read about old Stone Age tombs. Everybody’s heard about Stonehenge, but there are stone circles and other stacks of stones, big ones, all over the landscape, so I will buy books and read about them. I have books about Roman battle tactics, etc. Oh yes, and I also have a lot of geology books, depending on where we go. When we went to the Canadian Rockies, I got a lot of geology books about that locale. I bring those home, stack them up, and read them, hopefully before the next trip. So yes, a lot of reading. When my wife travels, sometimes I’ll go hiking. She’s gone up to 15-20 weekends a year  She’s a textile artist.She teaches lacemaking, which is the way they used to make lace by hand, before machines. There are groups around the country that enjoy lacemaking, so she travels to  teach workshops for them on weekends.
      Wow, that’s fascinating!
      This week, she’s actually up in Sparks, next to Reno, where the National Convention is going on. It moves around every year, but this year it’s relatively close. She travels a lot for that, which keeps her busy. When she’s away, our dog and I will sometimes go for hikes, if we don’t have too much other stuff to do. Interestingly,  we are not the only astronomer-lacemaker couple in the world (laughs). There’s an Australian couple – Ron and Jay Ekers – with Jay a lacemaker and Ron an astronomer. We had dinner with them once when they were visiting in the Bay Area because our wives knew each other. My wife had once traveled down to teach in Australia. Normally she just travels around the U.S., but she has done some international trips.
      Now, is this manual lacemaking with needles and thread or . . . ?
      There can be needles and thread. That’s one form of it. What my wife teaches is “bobbin lace”, which is made on a pillow usually stuffed with straw. Two bobbins are connected by a thread with many of these pairs used to weave threads together to create the pattern. Photos of Louise’s designs are on her website – https://colganlacestudio.com/. Here’s a photo of what a lace pillow looks like.
      “Bobbin lace”, which is made on a pillow usually stuffed with straw. Two bobbins are connected by a thread with many of these pairs used to weave threads together to create the pattern Interesting. And when did she get interested in this? Was it something she learned as a child, from her mother or grandmother?
      No, it was at Cornell. She was in grad school there, which is where we met.
      And what was her course of study?
      She was in a Master’s program for historic preservation, basically how to preserve old buildings, of which there are many in upstate New York and few in the Bay Area. She had finished her class work, and I still had several years to go on my dissertation. She looked around for something to fill her time, and one of her friends – a colleague in her department – had already taken this up, and brought her to a meeting. She started taking classes from a local teacher, and by the time we moved west, she was well-versed. Not many people out here knew how to do it, so she started taking on students.
      So I’m calculating back, since I’m a numbers guy, that if you just celebrated your 40th anniversary, then you must have married her while you were still in grad school?
      Yes, about halfway through grad school, in 1983.
      Interesting. So you’re a little bit responsible for her developing this interest in lacemaking?
      I wouldn’t claim any of that.
      But you’re responsible for giving her the time to develop this interest in lacemaking that she has done so well in.
      It was all her effort. If anything, I made conditions difficult for her, and she found her way out (laughs). That’s probably the way I would phrase it.
      Fair enough. But it’s very interesting. I like when we can poke around a little bit and find out interesting things, because then people who read this will say, “Well, I didn’t know that he went there or that his wife does lacemaking or the other things that you’ve talked about. That’s part of the purpose of these interviews.  Who or what inspires you?
      That was a real easy one for me: the night sky.  It’s not so great in the Bay Area most times, but there’s so much going on up there. I mean, it’s really all laid out for you. Since I studied and read about  a lot about the sky as a kid, I know my way around it. a I also know fun little facts, so that’s entertaining to recall as well. When you get up in the mountains, of course it’s just beautiful.
      I feel the same way. I don’t see how anyone can look up at and ponder the night sky and not be just fascinated by it. The questions that come up about what it is, how it came to be, what its purpose is, if there is one, and all of that is just fascinating.
      Yes, I agree.
      Do you have a favorite image, of space or anything that is particularly meaningful to you?
      You know I don’t have one now. I mean, there are a lot of very nice ones out there. A big favorite I remember as a kid was a photo of H and Chi Persei, which is a double cluster of stars, not globular clusters but open clusters. It’s very colorful, with red stars and white stars and blue stars in the image – and just imagining it so far away, but these particular stars are so close together. I don’t know much about it, but something about it just impressed me. A photo like what I remember is at https://www.astrobin.com/337742/.
      The reason we ask about images is because we like to include them in the post, especially about things you’ve talked about.  You mentioned for example, the Supernova 1987A. If a picture from SOFIA came out of that it would be a great addition to this interview. And then maybe you have a picture of you and the corgi on a hike, or your wife doing lace work, anything like that would be great.
      Well, we’ll work on that.
      [Photo thoughts: The three of us from Lake Louise, link to H & Chi Persei photo on the web, Lace Pillow showing bobbins]
      That would be for when you return it after editing.  By the way the transcript is a living document so you can make changes right on it and that’s how it will go in. It isn’t all that formal, we’re not tracking edits or anything like that. We’ll add your pictures and get to a point where it’s set up as it would be when it gets posted and then we’ll send it to you for a final check.  We’re also several months out in terms of the queue of those that are going to be posted, so it won’t be immediate.
      Good.
      We’ve posted about 50 of these, but we’ve done another 20 that are in various stages of being made ready. We’ve sent them out but haven’t gotten them back yet because everybody’s so busy.  We do have a last question and that is do you have a favorite quote? One that you find meaningful, or witty, or clever, that kind of thing?
      I did think about it. Sometimes you asked the question in the online ones about inspirational quotes and this is definitely not inspirational.
      It doesn’t have to be.
      I was hoping that because you didn’t say it here. My favorite quote is one my mom said a lot when I was growing up. She always attributed it to her father. I actually looked it up on the web, because I would have thought Mark Twain perhaps said it. It doesn’t seem that anybody famous has said it though. The reference is in a book from just ten years ago. The quote is: “The reward for good work is more work.”
      Ah, I like that. That’s clever and witty and seems to be true.
      Right.
      One of my favorite quotes which I don’t think I put into my post because there’s so many of them is from Mike Griffin, former NASA Administrator. He was talking with the press, I think about risk management and why we do things that don’t always work out. He was explaining that there’s always a risk, and if you don’t accept the risk, then you don’t make progress, but they kept questioning him and pushing back on that idea. And he said, “I can explain it to you, but I can’t understand it for you.”  And I thought, that’s a good line!
      Anyway, you ran the table here on the questions and I appreciate that you prepared ahead of time and wrote some notes down, which made the interview go very well.
      As I said, I prefer the written word. I’m not as good at thinking on my feet.
      Is there something that you wish we had asked or had put down as a topic that we didn’t, that you would like to add here? And you can certainly add or change anything when we send this back. There’s a note on the transcript that you have full creative control. So if you wanted to say something but didn’t, you can type in an entire extra paragraph or extra question, or remove and cut out an entire section.
      And  with that, I’ll take the recording and start putting it on a paper and within a couple of weeks, I’ll send you the initial draft and then you can do with it as you wish and send any pictures or anything that relate to things that you talked about and then we’ll get it ready and put it in the queue and eventually you’ll get perhaps a few of your entitled 15 minutes of fame when this goes up. I will add that it goes up on the public side of the of the website so that your family or your friends, anybody can access it and read it.
      So if somebody googles names of interviews you’ve done, the links to the interviews come up.
      Well, I hope that doesn’t cause you heartburn.
      I’ve thought about that as I was phrasing my answers, and changed some passwords so I can include names in the photo captions
      I hadn’t thought of that aspect of it, but you’re probably right.
      Yeah.
      I never know what’s going to touch someone’s concerns.
      Well, just to be careful.
      (Mark) There’s another thing that even after we publish, we can still edit them years into the future. Everything on the main sites can be changed at any given moment. Also, Fred, just to note, our interviews rank pretty high on the Google rankings. Usually when you Google someone’s name and then NASA, our interviews are near the top of their results, like on the first screen that comes up.
      (Fred) Oh, really? I didn’t know that.
      (Mark) Yeah. This is a pretty good series, people check it out a lot.
      Which means that people googling names are clicking on the interviews and reading them.
      (Mark) People read these a lot.
      (Fred) The other series I do for the website is “Interesting Fact of the Month”.  Steve Howell suggested that would be a nice addition as we try to attract traffic to the website, and I heard a year or so ago that it was the top item on the code ST website, it got the most hits.
      (Mark) Yes, you’ve got spots one and two on your side projects!
      (Fred) Well, Sean, I appreciate that you were able to overcome your initial hesitation and take the time to work with us on this and I think you’ll be pleased with how it comes out. Thank you very much for being so organized.
      Thank you for your time.
      Interview conducted by Fred Van Wert and Mark Vorobets on June 29, 2023
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      Samuel Suleiman, instructor de la pasantía OCEANOS, enseña a los estudiantes sobre el sargazo y la ecología costera en la Isla Culebra, Puerto Rico, durante la sección de trabajo de campo del proyecto. Suleiman también es el Director Ejecutivo de Sociedad Ambiente Marino: una ONG puertorriqueña que trabaja en la conservación y restauración de arrecifes de coral.NASA ARC/Milan Loiacono Read this interview in English here

      ¿Cuál es tu nombre y tu rol en OCEANOS?

      Mi nombre es Samuel Suleiman. Soy director ejecutivo de la Sociedad Ambiente Marino, una organización sin fines de lucro que se dedica a la conservación de las costas y los arrecifes en Puerto Rico desde hace más de 25 años. Trabajo en este gran proyecto de OCEANOS como investigador y participante de los recursos costeros y marinos, particularmente los ecosistemas marinos en la Isla de Culebra.

      ¿Cómo llegaste a la ciencia?

      Yo empecé en ciencias desde bien pequeños con el interés de ser pediatra. Luego cambiaron un poco los intereses y me tiré hacia la educación secundaria en ciencia, manteniendo las ciencias como base, y tuve una mezcla de la pasión del agua. A los cinco años estuve por ahogarme, y en vez de congelarme entre el miedo y el susto que había pasado de estar casi ahogándome. Me puse una careta y desde ese entonces no me he quitado la careta, aprendiendo cada vez un poquito más del océano, de nuestros mares, nuestras costas.

      ¿Cuál es la importancia de un programa como OCEANOS, particularmente en Puerto Rico?

      Yo creo que debería haber muchos más proyectos como OCEANOS en Puerto Rico que le den la oportunidad a jóvenes de explorar los recursos naturales que tiene nuestra isla. Si nosotros no aprendemos a cuidar nuestros recursos, no lo vamos a tener en el futuro. Así que una experiencia en un océano que nos permita a los internos tener en vida una experiencia en la que les acerque más a estos recursos marinos que tenemos tan bellos, que permitan que se envuelvan y se apasionen por la defensa de los mismos.

      ¿Qué crecimiento o cambio ve en los estudiantes a lo largo de la pasantía?

      El programa OCEANOS le ha permitido a los estudiantes tener un cambio de actitud, de pensamiento, en el que entiendo que han ido creciendo a lo largo de las experiencias. No solamente han tenido experiencias académicas y de instrucción, sino también experiencias prácticas en el campo, y cada uno de ellos se ha soltado de una manera increíble. Algunos han tenido la posición de liderazgo en sus grupos de trabajo y colaboración, en su grupo de trabajo y en otros grupos de trabajo, por lo que yo creo que la experiencia de OCEANOS le ha permitido madurar de cierta manera a estos jóvenes lo que es tan importante para el país y para el planeta.

      ¿Qué es algo que espera que los estudiantes se lleven con ellos cuando se vayan?

      A mí me gustaría que los estudiantes, y estoy muy seguro de que lo van a hacer, van a llevar una pasión bien grande por el océano, por nuestros mares, nuestras costas, nuestros arrecifes. Y definitivamente estoy muy confiado en que van a ser embajadores para la protección de estos recursos. Así que creo que programas como OCEANOS deben asfixiarse en muchos sectores para que podamos tener una participación un poquito más amplia alrededor de lugares y estudiantes que tienen acceso a este tipo de recursos y apoyo.

      Share
      Details
      Last Updated Nov 13, 2024 Related Terms
      General Ames Research Center's Science Directorate Earth Science Earth Science Division Explore More
      2 min read NASA Glenn Employees Named AIAA Associate Fellows 
      Article 2 hours ago 4 min read Entrevista con Instructora de OCEANOS María Fernanda Barbarena-Arias
      Article 16 hours ago 4 min read Entrevista con Instructor de OCEANOS Roy Armstrong
      Article 16 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      Roy Armstrong, un instructor de la pasantía de OCEANOS y profesor de ciencias marinas, pilotea un pequeño bote alrededor de los cayos frente a la costa de La Parguera, Puerto Rico.NASA ARC/Milan Loiacono Read this interview in English here
      ¿Cuál es tu nombre y tu rol en OCEANOS?

      Mi nombre es Roy Armstrong y soy profesor del Colegio de Mayagüez en el Departamento de Ciencias Marinas y en Océanos. Yo soy el investigador principal local en la Universidad de Puerto Rico y la manera que me involucré en este proyecto fue por invitación de mi ex estudiante, Juan Torres, quien trabaja en la NASA y se ideó este programa para motivar estudiantes hispanos puertorriqueños, particularmente a seguir carreras en la oceanografía usando tecnología de la NASA.

      ¿Cuál es la importancia de un programa como OCEANOS, particularmente en Puerto Rico?

      Primero, porque son muy pocos los jóvenes que deciden continuar en sus estudios graduados y sobre todo en las ciencias marinas. Y muchos se van fuera de Puerto Rico. Lo que queremos hacer es motivar a estudiantes desde jóvenes, desde escuela superior y a principios de universidad, a que estudien y tengan carreras en la oceanografía, las ciencias marinas, usando tecnología de la NASA, satelital y robótica, etcétera para que entonces se queden en Puerto Rico y trabajen protegiendo nuestros recursos naturales.

      ¿Qué ha sido algo gratificante de trabajar con estos estudiantes?

      Ha sido de gran satisfacción ver como los estudiantes se interesan en estos temas, aunque al principio lleguen con otras ideas en mente de otras carreras que quieren proseguir. Al final algunos deciden cambiar por completo sus preferencias y estudiar entonces ciencias marinas o seguir alguna carrera en tecnologías satelitales o cosas por el estilo. Así que eso para nosotros ha sido de suma satisfacción.

      ¿Cuál ha sido un desafío del programa?

      El reto principal de trabajar con estudiantes primero es mantenerlos motivados y atentos. Así que hay que intercalar diferentes actividades fuera del salón. Las charlas no pueden ser muy extensas y también los temas tienen que ser diversos. Tratamos de que también ellos participen en actividades, en pequeños grupos y participen en proyectos diferentes proyectos de investigación, así que no es todo estar oyendo charlas en un salón de clase, sino que hay muchas otras actividades.

      ¿Cómo llegaste a la ciencia?

      Yo empecé con mi interés en las ciencias marinas desde pequeño, porque yo nací en Puerto Rico, en Ponce y siempre he tenido una admiración inmensa por el mar. Y luego tuve la experiencia en mi 4.º año de universidad en los Estados Unidos de participar en un programa que se llama ‘el semestre en el mar,’ donde participé por seis semanas en un velero grande haciendo estudios de Oceanografía y eso me fascinó, me encantó. Y desde entonces yo supe que eso es lo que yo quería hacer en mi carrera.

      ¿Cuáles son algunos de los cambios ambientales que ha notado en Puerto Rico y sus alrededores?

      En Puerto Rico, al igual que muchas áreas del Caribe y del planeta en general, han ocurrido muchos cambios a través de las décadas. El ambiente marino en las costas y sobre todo en los arrecifes de coral en Puerto Rico. En particular, luego de varios huracanes al final de la década de los setentas una mortandad grande de los corales en aguas bien someras y luego eso dio lugar a enfermedades que afectan los corales por muchos años.  En años más recientes hemos tenido también el impacto del humano porque ha habido más presión en los ecosistemas por el uso de múltiples  embarcaciones que cada vez son más y más. Así que también se ha deteriorado la calidad de agua en muchos sitios. Y sabemos que esto no es exclusivamente de Puerto Rico, sino que es un problema básicamente a nivel global.

      ¿Qué es algo que espera que los estudiantes se lleven con ellos cuando se vayan?

      Pues mi esperanza con los estudiantes es que en los próximos años que pasen a universidad o que pasen a escuela graduada para estudiar entonces temas relacionados con las ciencias marinas y el uso de la tecnología satelital de la NASA. También espero que se motiven a permanecer en Puerto Rico y participar en el cambio que hace falta de protección de los ecosistemas de parte de una nueva generación que vienen desde pequeño con el interés y también el conocimiento de hacer un cambio notable en el futuro de este país y de nuestros ecosistemas.

      Share
      Details
      Last Updated Nov 12, 2024 Related Terms
      General Ames Research Center's Science Directorate Earth Science Earth Science Division Explore More
      4 min read Entrevista con Instructora de OCEANOS María Fernanda Barbarena-Arias
      Article 5 mins ago 4 min read Entrevista con Instructor de OCEANOS Juan Torres-Pérez
      Article 15 mins ago 1 min read Oral History with R. Walter Cunningham
      Article 4 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...