Jump to content

Bundling the Best of Heliophysics Education: DigiKits for Physics and Astronomy Teachers


Recommended Posts

  • Publishers
Posted

3 min read

Bundling the Best of Heliophysics Education: DigiKits for Physics and Astronomy Teachers

For nearly a decade, the American Association of Physics Teachers (AAPT) has been working to bring together resources through its DigiKits–multimedia collections of vetted high-quality resources for teachers and their students. These resources are toolkits, allowing teachers to pick and choose interesting content to support their instruction. As a partner with the NASA Heliophysics Education Activation Team (HEAT), this work has directly supported the bundling of digital content around heliophysics lessons created by the AAPT team.

As an example, AAPT’s most recent DigiKit publication, Auroral Currents Science (Figure 1), was developed for educators of advanced high school students and university physics/astronomy majors. DigiKits materials are collected by digital content specialist, Caroline Hall, who searches for high-quality, open digital content and checks it for accuracy and accessibility. The Auroral Currents DigiKit centers around a lecture tutorial that gives students the opportunity to practice and extend their knowledge of magnetic fields produced by current-carrying wires, and relating those understandings to auroral currents – the primary phenomenon underlying the dramatic auroral light shows seen in the sky over the past months.

The corresponding DigiKit includes a collection of relevant simulations, videos/animations, and other teacher resources for background that can help to teach the content in the primary lesson. The DigiKit highlights NASA’s forthcoming Electrojet Zeeman Imaging Explorer (EZIE) mission, including an animation of the relationship between the Earth and space, an explanation of Earth’s electrojets and a visualization of the spacecraft. It also includes links to NASA’s ongoing Magnetospheric Multiscale spacecraft video explanation of magnetic reconnection, among many other useful resources that can be shown in the classroom or explored individually by students. Unique to this DigiKit are recent science news articles covering 2024’s spectacular auroral displays.

The light in the aurora comes from atoms in the ionosphere that have been excited by collisions with electrons that were accelerated between 6000 km and 20000 km above Earth’s surface. Those electrons carry electric currents from space along the magnetic field, but the currents flow horizontally some distance through the ionosphere at about 100-150 km in altitude before returning to space. We call those currents the ionospheric electrojets, and we can see the magnetic effects of the electrojets because electric currents are the source of magnetic fields. The AAPT digikit allows students to explore the magnetic signature of the electrojets and determine the size and location of the currents.

As a result of participation in NASA HEAT, AAPT has produced ten DigiKits, all linked below and available alongside the collection of other tutorials/core resources on the AAPT NASA HEAT page. Although the DigiKits are directed toward teachers, and the lessons are intended for standard classroom contexts, the resources can also be a great introduction to NASA-related concepts and modern science ideas for the general public.

Mechanics

Light and Optics

Magnetism

Eclipses

Are you an educator curious to learn more? Register for AAPT’s monthly mini webinar series, with the next event on November 9, 2024, featuring the Auroral Currents DigiKit core activity.

NASA HEAT is part of the NASA Science Activation Program portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

Cover image of Auroral Currents DigiKit, displaying three images of glowing auroral ribbons in the Earth’s atmosphere. The DigiKit cover includes the following menu options: 1. Lecture Tutorial, 2. Simulation, 3. Video/Animation, 4. Observation Tools, 5. Background, 6. Learning Difficulties, 7. Recent News.
Figure 1: Cover image of Auroral Currents DigiKit.
Caroline Hall/AAPT NASA-HEAT

Share

Details

Last Updated
Nov 05, 2024
Editor
NASA Science Editorial Team

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Science Science Activation Sun at the Center: Teacher… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      Sun at the Center: Teacher Ambassadors Bring Heliophysics to Classrooms Nationwide
      For the fourth year in a row, the American Association of Physics Teachers, a collaborator on the NASA Heliophysics Education Activation Team (HEAT), selected eight new educators to serve as ambassadors for heliophysics education. Meeting in Boulder, CO, from July 14-17, 2025, these teachers met to work through AAPT’s lessons that bring physics content to life in the context of NASA heliophysics missions and the Framework for Heliophysics Education.
      The Ambassador program began in 2022 as an effort to identify highly-motivated secondary and tertiary educators who could encourage other educators to integrate NASA content into their teaching. The impact is clear – a handful of Ambassadors in the past few years have joined the program directly as a result of previous educators.
      New Jersey high school physics and astronomy teacher Erin Bontempo first learned about the program at the spring meeting of the National Science Teaching Association (NSTA). She attended a workshop led by Hava Turkakin and Francesca Viale, 2023 and 2024 Ambassadors and community college faculty. In a 60-minute interactive session, Hava and Francesca shared brief snapshots of four of AAPT’s lessons, connecting heliophysics to topics traditionally taught in core science courses, such as motion, light, and magnetism.
      Erin was intrigued by the lessons she saw: “When I began teaching astronomy eight years ago, I knew little about space. Ever since, I have been an avid student, constantly reading, researching, and in awe of the current NASA missions. I often look for courses to take to further my knowledge, and I feel like this is a perfect fit. When I attended the NSTA conference session on HEAT, it just clicked. The lessons that they brought using real data are the kind of exposure students need.”
      Ultimately, Erin was invited to be an Ambassador herself, along with seven other educators, to take part in the summit experience in Boulder. In addition to learning about heliophysics with the AAPT leadership team, the group visited the National Space Weather Prediction Center to hear first-hand how NASA, NOAA, and various federal and international agencies work to understand and respond to our changing Sun.
      Since the program began, 32 Ambassadors have been identified and participated in the multi-day professional learning experience, followed by a year of leadership and outreach to other educators. Beyond their own classrooms, they have reached educators across 36 local, state, and national events, holding extended workshops with nearly 500 other teachers.
      In addition to AAPT’s lessons, the AAPT/NASA HEAT Resources webpage also provides the names and states for all ambassadors as well as the schedule and topics for the upcoming ‘Physics in an Astronomy Context’ series of free online mini-workshops being planned for the 2025 Fall semester.
      NASA HEAT is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      Linh Ho and Samuel S. Macintire analyze the motion of a coronal mass ejection from the Sun. Share








      Details
      Last Updated Aug 19, 2025 Editor NASA Science Editorial Team Related Terms
      Opportunities For Educators to Get Involved Science Activation The Sun & Solar Physics Explore More
      3 min read Portable Planetarium takes Thousands of Alaskan Students on a Cosmic Adventure


      Article


      1 day ago
      3 min read NASA Science Activation Teams Unite to Support Neurodiverse Learners with Public Libraries


      Article


      2 weeks ago
      4 min read STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By Amazing Space
      LIVE Perseid Meteor Show watch - backyard astronomy
    • By NASA
      Technicians at the Astrotech Space Operations Facility near NASA’s Kennedy Space Center in Florida conduct illumination testing on Friday, July 18, 2025, by flashing a bright light that simulates the Sun into the two-panel solar array that will help power the agency’s IMAP (Interstellar Mapping and Acceleration Probe) observatory on its upcoming journey to a destination about one million miles away from Earth Lagrange Point 1.Credit: NASA/Kim Shiflett NASA invites media to view the agency’s IMAP (Interstellar Mapping and Acceleration Probe) spacecraft and two other missions — the Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On–Lagrange 1 (SWFO-L1) observatory, which will launch along with IMAP as rideshares.
      Media will have the opportunity to photograph the three spacecraft and speak with subject matter experts representing all three missions. The event will take place on Thursday, Aug. 28, at the Astrotech Space Operations payload processing facility in Titusville, Florida. Confirmed media will receive additional details after registering.
      To participate in the event, media must RSVP by 11:59 p.m. on Tuesday, Aug. 19, by submitting their request online at: https://media.ksc.nasa.gov.
      The IMAP mission will study the heliosphere, a vast magnetic bubble created by the Sun that protects our solar system from radiation incoming from interstellar space. Carruthers will use its ultraviolet cameras to monitor how material from the Sun impacts the outermost part of Earth’s atmosphere. The SWFO-L1 mission will observe solar eruptions, and monitor incoming space weather 24/7, providing early warnings and validating forecasts that protect vital communication and navigation infrastructure, economic interests, and national security, both on Earth and in space.
      NASA is targeting no earlier than September for the launch of these three missions on a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
      NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
      Facility Access
      Due to spacecraft cleanliness requirements, this invitation is open to a limited number of media with no more than two individuals per media organization. This event is open to U.S. citizens who possess a valid government-issued photo identification and proof of U.S. citizenship, such as a passport or birth certificate.
      Media attending this event must comply with cleanroom guidelines. This includes wearing specific cleanroom garments; avoiding cologne, cosmetics, and high-heeled shoes; cleaning camera equipment under the supervision or assistance of contamination control specialists; and placing all electronics in airplane mode in the designated areas near the spacecraft. NASA will provide detailed guidance to approved media.
      Observatories Information
      The three observatories are preparing to launch to Lagrange point 1, which lies about a million miles from Earth toward the Sun. There, they will orbit this gravitational balance point, holding a steady position between Earth and the Sun. NASA’s IMAP will use its 10 instruments to map the heliosphere’s edge and reveal how the Sun accelerates charged particles, filling in essential puzzle pieces to understand the space weather environment across the solar system. The mission’s varied instruments also will provide near real-time space weather data to scientists on Earth.
      The Carruthers observatory will image the glow of ultraviolet light emitted by the uppermost parts of Earth’s atmosphere — called the geocorona — to help researchers understand how our planet’s atmosphere is shaped by conditions in space. NOAA’s SWFO-L1 will use its suite of instruments to sample the solar wind and interplanetary magnetic field, while its onboard coronagraph will detect coronal mass ejections and other solar events. Together, these real-time observations of space weather enable precautionary actions to protect satellites, power grids, aviation, and communication and navigation technology.
      Learn more about NASA’s IMAP at:
      https://science.nasa.gov/mission/imap/
      -end-
      Abbey Interrante
      Headquarters, Washington
      301-201-0124
      abbey.a.interrante@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Leejay Lockhart
      Kennedy Space Center, Florida
      321-747-8310
      leejay.lockhart@nasa.gov
      Share
      Details
      Last Updated Aug 08, 2025 LocationNASA Headquarters Related Terms
      NASA Headquarters Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics Heliophysics Division IMAP (Interstellar Mapping and Acceleration Probe) Kennedy Space Center Space Weather The Sun View the full article
    • By Amazing Space
      5 Fascinating Lunar Features Under the Sturgeon Moon 🌕 | #SturgeonMoon #FullMoon #Astronomy
    • By Amazing Space
      LIVE : Sun Live stream - close up Video Of The Sun / Lunt Telescope - Backyard Astronomy
  • Check out these Videos

×
×
  • Create New...