Jump to content

Sols 4352-4354: Halloween Fright Night on Mars


Recommended Posts

  • Publishers
Posted

3 min read

Sols 4352-4354: Halloween Fright Night on Mars

A close-up color photo from the Martian surface shows an area of what looks like pale orange, fine-grained soil or sand that’s reflective, as if it were moist (or just shiny). It’s terraced, creating different levels that look like a topographic map, and overlaid across the top of the entire area is a latticework that in several places looks like the cells of a layer of dried foam. Most of the area is sunlit, but about a third of the image — from the top center of the frame to the lower right corner — is in shadow, presumably cast by the Curiosity rover.
NASA’s Mars rover Curiosity acquired this image of the target surface feature nicknamed “Reds Meadow,” using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm. Curiosity captured the image Oct. 31, 2024, at 19:09:10 UTC, on sol 4350 — Martian day 4,350 of the Mars Science Laboratory Mission.
NASA/JPL-Caltech/MSSS

Earth planning date: Friday, Nov. 1, 2024

Yesterday evening (Thursday) was Halloween for many of us here on Earth. My neighborhood in eastern Canada was full of small (and not so small!) children, running around in the dark collecting sweets and candy but also getting scared by the ghostly decorations hung at each house. Little did we suspect that our poor rover on Mars was also getting spooked. Curiosity completed about a meter (about 3 feet) of the planned drive before becoming unsettled … scared, if you will! … when its left front wheel got hung up on a rock and stopped moving.

Luckily, we understood this kind of frightened behavior and were able to resume planning today as per usual. That meter was enough to give us a whole new set of targets to choose from. As APXS Strategic Planner this week, I had chosen darker-looking targets in the workspace — “Ladder Lake” and “Reds Meadow” (shown in the accompanying MAHLI image) — earlier in the week. I was happy that bumping backwards by a meter allowed us to reach some of the more typical pale colored bedrock at “Eureka Valley” and a second APXS analysis on “Black Bear Lake,” which is a mixture of both pale bedrock and some darker layers. MAHLI added in a bonus set of images on “Stag Dome,” focusing on small, rougher patches on the pale bedrock.

ChemCam is taking advantage of the short bump, too, adding a passive observation on the brushed Reds Meadow target, analyzed by APXS and MAHLI in Monday’s plan. A ChemCam LIBS target “Hoist Ridge” focuses on a small vertical face of dark material. Two long distance images planned for ChemCam’s Remote Micro Imager (RMI) look at the distribution of rocks along the Gediz Vallis ridge in the distance.

Mastcam is taking several mosaics this weekend (must have gotten extra energy from the Halloween sugar!). Close to the rover, Mastcam will acquire single-frame images of the targets Hoist Ridge and Eureka Valley, and a small mosaic of some surficial troughs just a little further away. Moving further afield, a small 3×1 mosaic (three images in one row) will image the same area as the ChemCam RMI of the Gediz Vallis ridge, and a larger 9×2 mosaic will focus on the faraway yardang unit, where we hopefully will be in a few years.

Then for the really big images: Mastcam will image the whole landscape in a special 360-degree view, so big it needs to be broken into two parts. The first will have 43×4 frames, the second 34×5 frames. These mosaics are huge, so we save them for when we are at a really good vantage point to allow us to capture as much detail as possible for science and engineering planning.

As ever, we continue our environmental monitoring of conditions, with Mastcam and Navcam movies and images looking at dust in the atmosphere above and around us in Gale crater, and watching out for dust devils.

Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick

    Share

    Details

    Last Updated
    Nov 04, 2024

    Related Terms

    View the full article

    Join the conversation

    You can post now and register later. If you have an account, sign in now to post with your account.
    Note: Your post will require moderator approval before it will be visible.

    Guest
    Reply to this topic...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.

    • Similar Topics

      • By NASA
        NASA/Kim Shiflett NASA astronauts Christina Koch, Artemis II mission specialist, and Victor Glover, Artemis II pilot, walk on the crew access arm of the mobile launcher in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Tuesday, Aug. 12, 2025.
        On Aug. 11 and 12, teams with the agency’s Exploration Ground Systems Program along with NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, practiced launch day operations if launch occurs at night. They simulated putting their spacesuits on and driving to the launch pad as well as emergency procedures they would use in the unlikely event of an emergency during the launch countdown requiring them to evacuate the launch pad.
        Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars.
        Image credit: NASA/Kim Shiflett
        View the full article
      • By NASA
        Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
        Curiosity Blog, Sols 4629-4630: Feeling Hollow
        NASA’s Mars rover Curiosity acquired this image of its workspace, including the small crescent-shaped rock named “Wedge Tailed Hillstar,” visible in the image just above the letters “SI” written on Curiosity’s arm. Curiosity captured the image using its Left Navigation Camera on Aug. 13, 2025 — Sol 4628, or Martian day 4,628 of the Mars Science Laboratory mission — at 08:54:46 UTC. NASA/JPL-Caltech Written by Elena Amador-French, Science Operations Coordinator at NASA’s Jet Propulsion Laboratory
        Earth planning date: Wednesday, Aug. 13, 2025
        Today’s team investigated the texture and chemistry of the bedrock within a topographic low, or hollow, found within the greater boxwork area. We will place our APXS instrument on the “Asiruqucha” target, some light-toned, small-scale nodular bedrock in the middle of our workspace. These data will help illuminate any systematic chemical trends between the hollows and ridges in this area. We always take an associated MAHLI image with every APXS measurement to help contextualize the chemistry. We will also observe a small crescent-shaped rock named “Wedge Tailed Hillstar” with MAHLI, visible in the above Navcam image just above the letters “SI” written on Curiosity’s arm.
        We will use our remote sensing instruments to continue documenting the region taking stereo Mastcam images of “Cerro Paranal,” “Rio Frio,” and “Anchoveta.”  The ChemCam instrument will take an image of, and collect chemical information for, the target “Camanchaca,” as well as use its Remote Micro Imager (RMI) to take high-resolution imaging of more distant boxwork features. 
        Once these observations are completed Curiosity will set off on a 30-meter drive (about 98 feet), taking us to an interesting ridge feature to investigate in Friday’s plan.
        As usual we will continue to take our regular atmospheric monitoring observations using REMS, RAD, and DAN.

        Want to read more posts from the Curiosity team?



        Visit Mission Updates


        Want to learn more about Curiosity’s science instruments?



        Visit the Science Instruments page


        NASA’s Mars rover Curiosity at the base of Mount Sharp NASA/JPL-Caltech/MSSS Share








        Details
        Last Updated Aug 18, 2025 Related Terms
        Blogs Explore More
        2 min read Curiosity Blog, Sols 4627-4628: A Ridge Stop in the Boxworks


        Article


        3 days ago
        2 min read Curiosity Blog, Sols 4624-4626: A Busy Weekend at the Boxwork


        Article


        5 days ago
        2 min read Linking Local Lithologies to a Larger Landscape


        Article


        2 weeks ago
        Keep Exploring Discover More Topics From NASA
        Mars


        Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


        All Mars Resources


        Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


        Rover Basics


        Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


        Mars Exploration: Science Goals


        The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

        View the full article
      • By NASA
        Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
        Curiosity Blog, Sols 4627-4628: A Ridge Stop in the Boxworks
        NASA’s Mars rover Curiosity acquired this close-up view of the rock target “Bococo” at the intersection of several boxwork ridges, showing bright millimeter-scale nodules likely to be calcium sulfate. Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, which uses an onboard focusing process to merge multiple images of the same target, acquired at different focus positions, to bring all (or, as many as possible) features into focus in a single image. Curiosity performed the merge on Aug. 10, 2025 — Sol 4625, or Martian day 4,625 of the Mars Science Laboratory mission — at 08:00:39 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday Aug. 11, 2025
        Written by Lucy Lim, Planetary Scientist at NASA’s Goddard Space Flight Center
        On the Curiosity team, we’re continuing our exploration of the boxwork-forming region in Gale Crater. A successful 25-meter drive (about 82 feet) brought the rover from the “peace sign” ridge intersection to a new ridge site. Several imaging investigations were pursued in today’s plan, including Mastcam observations of a potential incipient hollow (“Laguna Miniques”), and of a number of troughs to examine how fractures transition from bedrock to regolith.
        With six wheels on the ground, Curiosity was also ready to deploy the rover arm for some contact science. APXS and MAHLI measurements were planned to explore the local bedrock at two points with a brushed (DRT) measurement (“Santa Catalina”) and a non-DRT measurement (“Puerto Teresa”). A third MAHLI observation will be co-targeted with one of the LIBS geochemical measurements on a light-toned block, “Palma Seca.” Because we’re in nominal sols for this plan, we were able to plan a second targeted LIBS activity to measure the composition of a high-relief feature on another block, “Yavari” before the drive.
        The auto-targeted LIBS (AEGIS) that executed post-drive on sol 4626 had fallen on a bedrock target and will be documented in high resolution via Mastcam imaging.
        Two long-distance imaging mosaics were planned for the ChemCam remote imager (RMI): one on a potential scarp and lens in sediments exposed on the “Mishe Mokwa” butte in the strata above the rover’s current position, and the second on an east-facing boxwork ridge with apparently exposed cross-bedding that may be related to the previously explored “Volcán Peña Blanca” ridge.
        As usual, the modern Martian environment will also be observed with camera measurements of the atmospheric opacity, a Navcam movie to watch for dust lifting, and the usual REMS and DAN passive monitoring of the temperature, humidity, and neutron flux at the rover’s location.
        The next drive is planned to bring us to a spot in a hollow where we hope to plan contact science on the erosionally recessive hollow bedrock in addition to imaging with a good view of the rock layers exposed in the wall of another prominent ridge.

        Want to read more posts from the Curiosity team?



        Visit Mission Updates


        Want to learn more about Curiosity’s science instruments?



        Visit the Science Instruments page


        NASA’s Mars rover Curiosity at the base of Mount Sharp NASA/JPL-Caltech/MSSS Share








        Details
        Last Updated Aug 14, 2025 Related Terms
        Blogs Explore More
        2 min read Curiosity Blog, Sols 4624-4626: A Busy Weekend at the Boxwork


        Article


        2 days ago
        2 min read Linking Local Lithologies to a Larger Landscape


        Article


        1 week ago
        3 min read Curiosity Blog, Sols 4622-4623: Kicking Off (Earth) Year 14 With an Investigation of Veins


        Article


        1 week ago
        Keep Exploring Discover More Topics From NASA
        Mars


        Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


        All Mars Resources


        Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


        Rover Basics


        Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


        Mars Exploration: Science Goals


        The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

        View the full article
      • By NASA
        National Institute of Aerospace NASA is calling on the next generation of collegiate innovators to imagine bold new concepts l pushing the boundaries of human exploration on the Moon, Mars, and beyond through the agency’s 2026 NASA Revolutionary Aerospace Systems Concepts – Academic Linkage (RASC-AL) competition.  
        The RASC-AL challenge fuels innovation for aerospace systems concepts, analogs, and technology prototyping by bridging gaps through university engagement with NASA and industry. The competition is seeking U.S.-based undergraduate and graduate-level teams and their faculty advisors to develop new concepts to improve our ability to operate on the Moon and Mars. This year’s themes range from developing systems and technologies to support exploration of the lunar surface, to enhancing humanity’s ability to operate and return data from the surface of Mars.  
        “This competition is a unique opportunity for university students to play a role in the future of space innovation,” said Dan Mazanek, assistant branch head of NASA’s Exploration Space Mission Analysis Branch at NASA’s Langley Research Center in Hampton Virginia. “The RASC-AL challenge fuels creativity and empowers students to explore what’s possible. We’re excited for another year of RASC-AL and fresh ideas coming our way.”  
        Interested and eligible teams are invited to propose groundbreaking solutions and systems approaches that redefine how humans live and explore in deep space with relation to one of the following themes:  
        Communications, Positioning, Navigation, and Timing Architectures for Mars Surface Operations  Lunar Surface Power and Power Management and Distribution Architectures   Lunar Sample Return Concept  Lunar Technology Demonstrations Leveraging Common Infrastructure   Teams should express their intent to participate by submitting a non-binding notice of intent by Monday Oct. 13. Teams who submit a notice will be invited to a question-and-answer session with NASA subject matter experts on Monday Oct. 27.  
        The proposals, due Monday Feb. 23, 2026, are required to be seven-to-nine pages with an accompanying two-to-three-minute video. Proposals should demonstrate innovative solutions with original engineering and analysis in response to one of the four 2026 RASC-AL themes. Each team’s response should address novel and robust technologies, capabilities, and operational models that support expanding human’s ability to thrive beyond Earth. 
        Based on review of the team proposal and video submissions, in March, up to 14 teams will be selected to advance to the final phase of the competition – writing a technical paper, creating a technical poster, and presenting their concepts to a panel of NASA and industry experts in a competitive design review at the 2026 RASC-AL Forum in Cocoa Beach, Florida, beginning Monday June 1, 2026. 
        “The RASC-AL challenge enables students to think like NASA engineers—and in doing so, they often become the engineers who will carry NASA forward,” said Dr. Christopher Jones, RASC-AL program sponsor and Chief Technologist for the Systems Analysis and Concepts Directorate at NASA Langley. “The concepts they develop for this year’s competition will help inform our future strategies.”  
        Each finalist team will receive a $7,000 stipend to facilitate their full participation in the 2026 RASC-AL competition, and the top two overall winning teams will each be awarded an additional $7,000 cash prize as well as an invitation to attend and present their concept at an aerospace conference later in 2026. 
        The 2026 NASA RASC-AL competition is administered by the National Institute of Aerospace on behalf of NASA. The RASC-AL competition is sponsored by the agency’s Strategy and Architecture Office in the Exploration Systems Development Mission Directorate at NASA Headquarters, the Space Technology Mission Directorate (STMD), and the Systems Analysis and Concepts Directorate at NASA Langley. The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing Program in STMD, manages the challenge. 
        For more information about the RASC-AL competition, including eligibility and submission guidelines, visit: https://rascal.nianet.org/. 
        View the full article
      • By NASA
        Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
        Curiosity Blog, Sols 4624-4626: A Busy Weekend at the Boxwork
        NASA’s Mars rover Curiosity captured this image of the three intersecting ridges in front of it this weekend that make a sort of “peace sign” shape. Curiosity acquired the image using its Left Navigation Camera on Aug. 8, 2025 — Sol 4623, or Martian day 4,623 of the Mars Science Laboratory mission — at 06:20:38 UTC. NASA/JPL-Caltech Written by Alex Innanen, Atmospheric Scientist at York University
        Earth planning date: Friday, Aug. 8, 2025
        We continue to progress through the boxwork structures, arriving today at the “peace sign” ridges we were aiming for in our last drive. We’re spending the first two sols of the weekend at this location, learning everything we can about the boxwork ridges all around us. Then we’re driving further along and spending our third sol at our next location doing a bit more untargeted science. 
        Our first sol includes three contact science targets, “Palmira,” “Casicasi,” and “Bococo,” which both MAHLI and APXS will be checking out nice and close. ChemCam is also using its LIBS laser to check out Bococo, and taking a mosaic of some more distant boxwork ridges. Not to be left out, Mastcam is taking a mosaic of the intersecting peace-sign-shaped ridges, which have been given the name “Ayopaya,” as well as another mosaic of the edge of one of the nearby ridges. The environmental science group (ENV) is also taking a dust-devil movie and a surpahorizon cloud movie.
        On our second sol, ChemCam has another LIBS observation of “Britania.” Mastcam has some more mosaics, today looking back at our wheel tracks to see what we might have turned up on our drive, as well as out to the more distant ridges. We also have another cloud movie coinciding with imaging from above by the CaSSIS camera on board the Trace Gas Orbiter, trying to spot the same clouds from above and below. After our drive Curiosity gets to take a nice long snooze before waking up early for our typical weekend morning ENV block, which includes three different cloud observations (it’s still the cloudy season, after all!) and two observations to look at dust in the crater and in the sky above. Later on this sol ChemCam will use AEGIS to autonomously pick a LIBS target, we’ll have a 360-degree survey to try to catch dust devils. Finally, we’re setting our sights back on the clouds, using cloud shadows on Mount Sharp to estimate cloud altitudes.

        Want to read more posts from the Curiosity team?



        Visit Mission Updates


        Want to learn more about Curiosity’s science instruments?



        Visit the Science Instruments page


        NASA’s Mars rover Curiosity at the base of Mount Sharp NASA/JPL-Caltech/MSSS Share








        Details
        Last Updated Aug 12, 2025 Related Terms
        Blogs Explore More
        2 min read Linking Local Lithologies to a Larger Landscape


        Article


        5 days ago
        3 min read Curiosity Blog, Sols 4622-4623: Kicking Off (Earth) Year 14 With an Investigation of Veins


        Article


        6 days ago
        3 min read Curiosity Blog, Sols 4618-4619: The Boxwork Structures Continue to Call to Us


        Article


        1 week ago
        Keep Exploring Discover More Topics From NASA
        Mars


        Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


        All Mars Resources


        Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


        Rover Basics


        Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


        Mars Exploration: Science Goals


        The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

        View the full article
    • Check out these Videos

    ×
    ×
    • Create New...